


Validating Two-Stage Course Placement Systems
When Data Are Truncated

Jeff L. Schiel
Matt Harmston



ii

Abstract

In two-stage course placement systems, students first take a screening test.

Students who score at or above the screening test cutoff score K enroll directly in a

standard college course, whereas those who score below K take a placement test.

Students who subsequently score at or above the placement test cutoff K� also enroll in

the standard course.  Consequently, students in the standard course will not have

placement test scores below K�.  Moreover, placement test scores are somewhat truncated

above K�, because students who earned scores above K on the screening test did not have

to take the placement test.  Hence, their placement test scores, which likely would have

equaled or exceeded K�, are “missing.”

Previous research has only examined truncation in one-stage placement systems,

in which it occurs below, but not above, the cutoff score.  In this study, the effects of

truncation on estimated optimal cutoffs, accuracy rates, and success rates under different

combinations of logistic regression curve, test score distribution shape, and sample size

were examined for two-stage placement systems.  It is shown that even when data are

moderately truncated in such systems (e.g., baseline truncation below K� and 80%

truncation above K�), validity statistics and optimal cutoffs can be estimated with

reasonable accuracy.



Validating Two-Stage Course Placement Systems When Data Are Truncated

Postsecondary institutions often use standardized test scores when deciding into

which courses students ought to be placed.  After selecting a cutoff score, institutional

staff will permit students scoring at or above it to be placed into a standard course (e.g.,

pre-calculus).  Students scoring below the cutoff will be placed into a lower-level,

remedial course (e.g., college algebra).  For the benefit of their institutions and students,

institutional staff want to make correct placement decisions, of which there are two types:

1) students placed into a standard course have the necessary skills and knowledge to

ultimately succeed in the course, and 2) students placed into a remedial course would not

have succeeded in the standard course had they instead been placed into it.  Incorrect

placement decisions may negatively affect both students and institutions.  For example, a

student with better-than-average mathematical skills who is incorrectly placed into a

remedial mathematics course may become frustrated by the expense and time required to

complete an additional course, and may consider transferring to another institution.

If students, parents, or others perceive placement systems as being unfair or

hastily developed, then these systems may be criticized.  By establishing statistical

validity evidence that relates standardized test scores or other variables to successful

performance in standard courses, institutions can strengthen their respective rationales for

using certain placement procedures, tests, and cutoff scores.  In this way, institutions are

better prepared to respond to potential criticism of their placement systems.

One method for providing course placement validity evidence uses logistic

regression and decision theory to describe relationships between outcomes in standard

college courses and test scores, estimate proportions of correct decisions given particular
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cutoff scores, and identify optimal cutoffs (ACT, 1994; Noble & Sawyer, 1997; Sawyer,

1989; Sawyer, 1996).  In evaluating course placement systems, logistic regression can be

used to estimate the conditional probability of success P̂  in a standard course, given test

score (or other predictor variables).  Estimated probabilities can then be used with the

marginal distribution of test scores to estimate other course placement validity statistics,

such as the accuracy rate Â , which is the estimated proportion of correct placement

decisions.  The optimal cutoff score is the cutoff score at which Â  is maximized.

Another validity statistic, the success rate Ŝ , is the estimated proportion of students

succeeding in the standard course, among all students who could have been placed in that

course.

Because students who score below the cutoff typically do not enroll in the

standard course and do not have course outcome data (e.g., grades), the data of course

placement systems are truncated below the cutoff.  This presents certain difficulties in

estimating statistics, regardless of the method used to evaluate a placement system.  For

example, a logistic regression function, which is computed from the data of students who

completed the standard course, must be extrapolated to test scores below the cutoff in

order to estimate P̂ , Â , and Ŝ  over the entire range of placement test scores.  Thus, the

statistics will be useful only to the extent that their accuracy is not adversely affected by

truncation.

In general, as truncation increases, the accuracy of validity statistics decreases

(Houston, 1993; Schiel & Noble, 1992; Schiel, 1998; Schiel & King, 1999).  Moreover,

hard truncation, a condition in which data are unavailable for all students below the

cutoff, generally results in less accurate validity statistics than does soft truncation, where
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data are available for some, but not all, students (Schiel, 1998; Schiel & King, 1999).

One instance in which soft truncation occurs is when an institution does not strictly

enforce a cutoff, but permits students who score below it to enroll in a standard course.

For example, students with low placement test scores may be confident that they can

succeed in the standard course, or they may furnish to the institution additional

information that suggests they are likely to succeed (e.g., a score on an ancillary, local

placement test).  Whatever their reasons for enrolling in the standard course, some of the

students with scores below the cutoff will have standard course outcome data that can be

included with the data of students scoring above the cutoff, thereby augmenting the

sample used to estimate validity statistics.

Using computer-generated data to estimate conditional probabilities of success,

Schiel (1998) found that fairly accurate estimates of P̂  could be obtained under

simulated soft truncation when the logistic regression curve was steep.  In addition,

distributions that were initially negatively skewed with respect to the predictor (test

score) variable tended to be more resistant to the influence of truncation than did

symmetrical distributions.

When examining estimated optimal cutoff scores, Schiel noted that data with

steep logistic curves tended to produce reasonably accurate estimates (i.e., accurate to

within 1 ACT Assessment scale score point), even with what was termed “40%” soft

truncation.  In general, the slope of the logistic curve and the skewness of the marginal

test score distribution appeared to have little to do with the relative accuracy of the

validity statistics unless soft truncation exceeded 40%.
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Schiel and King (1999) studied a somewhat different definition of soft truncation.

They used a chance-level score below which all student data were deleted (not to be

confused with the cutoff score).  Moreover, the authors specified that observations that

were below the cutoff score, but nearer to it, would have a higher probability of being

retained than would those that were nearer to the chance-level score.  The rationale for

this was that the nearer a low-scoring student was to the cutoff score, the greater was his

or her likelihood of enrolling in the standard course.

With some exceptions, Schiel and King observed that reasonably accurate

estimates of P̂  could be obtained under varied levels of soft truncation.  Although

increased degrees of soft truncation were associated with decreased accuracy in P̂  and

Â , the decrease was not unacceptably large.  In addition, reasonably accurate optimal

cutoff scores could often be obtained under 40% soft truncation.  In some instances, the

accuracy of cutoff scores was reasonable under soft truncation as high as 80%.

Truncation in a Two-Stage Placement System

Previous research has only examined truncation as it occurs below a given cutoff

score in one-stage placement systems.  There are, however, situations in which truncation

is present both below and above the cutoff.  For example, in two-stage placement

systems, students are required to take a screening test and, in some instances, a placement

test as well.  Such a system is illustrated in Figure 1.
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FIGURE 1.  Placement Using Screening and Placement Tests

A:  Placement Based on Results of Screening Test

B:  Placement Based on Results of Screening

C:  Distribution of Placement Test Scores for
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In this placement system, all incoming students are tested with the ACT

Assessment (screening test), a curriculum-based test used in college admissions and

placement.  ACT Mathematics scores are used, for example, as an initial indicator of

whether to place students into either a standard or remedial mathematics course.  As

shown in Panel A of Figure 1, all students scoring at or above the screening test cutoff

score K are placed directly into the standard course.  Those scoring below K must instead

take the COMPASS Algebra test (placement test).  COMPASS is a computer adaptive

testing system that measures students’ academic skills and knowledge in mathematics,

reading, and writing.

Panel B of Figure 1 illustrates that of those students who must take the placement

test, only students scoring at or above the cutoff score K� on this test can enroll in the

standard course.  Consequently, both hard and soft truncation of the conditional

placement test score distribution (Region 2) for standard course participants may be

present, as shown in Panel C.  Hard truncation occurs below K�, whereas soft truncation

occurs above K�.  The dashed curve in Panel C illustrates a nontruncated condition above

K�.  Note that soft truncation can also occur below K�, depending on an institution’s

enforcement of cutoff scores.

Soft truncation (as depicted in Panel C) occurs because students who earned high

scores (i.e., � K) on the screening test did not have to take the placement test.  Hence,

their placement test scores, which likely would have equaled or exceeded K�, are

“missing.”  Note that the relationship between the scores on the screening test and those

on the placement test is imperfect.  For example, most students who earn low scores on

the screening test (i.e., < K) will also earn low scores on the placement test, but some will
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earn high placement test scores.  If the screening test and placement test were perfectly

correlated, then hard truncation would occur above K� and there would be no need for the

placement test.

This study investigated the effects of truncation on the accuracy of validity

statistics for two-stage placement systems.  As described in the following section, the

extent of simulated truncation both below and above K� was adjusted.  It was expected

that as truncation was increased to the point where it was relatively severe (e.g., hard

truncation below K� paired with 80% soft truncation above K�), the accuracy of estimated

validity statistics would decrease.  However, given that truncation in a two-stage

placement system differs from that in a one-stage system, it was possible that

relationships between truncation severity and validity statistic accuracy would differ in

the two systems.

Method

Computer-generated data representing a two-stage placement system were used in

this study.  The screening test was assumed to have the score scale and properties of an

ACT Assessment subject area test (e.g., Mathematics).  A cutoff score of 20 was selected

for the screening test because of its consistency with cutoffs identified in Houston (1993)

and in ACT’s course placement research (ACT, internal memorandum, September 17,

1998).  With certain assumptions concerning the shape of the test score distribution (e.g.,

negative skewness), this cutoff would place approximately 38% of ACT-tested

examinees into the standard course.  

It was assumed in this study that hypothetical examinees scoring below 20 on the

ACT Mathematics test would take the COMPASS Algebra test.  Those scoring at or
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above a selected cutoff score on COMPASS Algebra would be placed directly into the

standard course.  A target COMPASS cutoff of 32 was used for two reasons.  First, this

cutoff results in approximately the same percentage of examinees enrolling in the

standard course as does the ACT Mathematics cutoff score of 20.  Second, the cutoff is

near the COMPASS cutoff used by a large state postsecondary system, which uses the

ACT Assessment as a screening test.  Due to the initial screening based on ACT

Mathematics, this study assumed that conditional, truncated COMPASS distributions

were positively skewed, as illustrated in Figure 1.  Moreover, some of the placement

group (nontruncated) distributions were generated to have positive skew, to mimic that

exhibited by the distribution of COMPASS Mathematics scores for students nationwide.

Throughout this paper, ACT Mathematics and COMPASS Algebra scores are

used as examples to facilitate discussion, as well as to provide a rationale for selecting

cutoff scores.  However, the results of the study are not necessarily limited to

mathematics tests, or even to these two test batteries.

Generation of Placement Group Data

Nontruncated COMPASS score distributions were generated to form placement

groups.  A placement group consists of all students for whom placement decisions must

be made and for whom placement test scores are available.  In this study, data for 11

placement groups were generated.  Placement group distributions contained standard

course outcomes corresponding to the full range of COMPASS scores, including those

that would have been earned by high-scoring ACT Assessment examinees had they taken

COMPASS.  Validity statistics from these distributions were considered “true” values to

which validity statistics from truncated distributions were compared.
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Placement groups were defined according to two sample sizes (100 and 500), two

logistic function slopes (steep and flat), and three levels of skewness of the marginal

distribution of COMPASS scores (approximately zero, medium positive, high positive).

Table 1 describes the characteristics of the 11 placement groups.

TABLE 1

Placement Group Characteristics

Placement
group N

Estimated
optimal
cutoff Slope

Logistic model
parameter estimates

Skewness of marginal
COMPASS distribution

1 500 32 Steep b0 = -3.67, b1 = .12 High pos. (.70)
2 500 33 Steep b0 = -3.53, b1 = .11 Medium pos. (.46)
3 500 32 Steep b0 = -3.71, b1 = .12 Zero (.18)
4 500 27 Flat b0 = -0.63, b1 = .02 High pos. (.66)
5 500 30 Flat b0  = -1.16, b1 = .04 Medium pos. (.47)
6 500 39 Flat b0 = -1.49, b1 = .04 Zero (.10)
7 100 36 Steep b0 = -4.84, b1 = .14 High pos. (.70)
8 100 33 Steep b0 = -6.36, b1 = .19 Medium pos. (.20)
9 100 32 Steep b0 = -3.91, b1 = .13 Zero (-.01)
10 100 34 Flat b0 = -0.47, b1 = .01 High pos. (.82)
11 100 35 Flat b0 = -1.88, b1 = .06 Zero (-.15)

Data were also generated for a twelfth placement group of size n=100 with a flat

slope and medium skewness.  It was found, however, that the maximum Â  for this group

occurred at a COMPASS score of 16.  Such a low optimal cutoff score would not likely

be used in actual placement systems.  Moreover, the low optimal cutoff prevented the

development of score intervals for purposes of truncation simulation (see the following

section).  For these reasons, data from this particular placement group were not analyzed.

The data generation process consisted of the following steps:

1) COMPASS scores were generated using methods similar to those in Houston

(1993).  Under the condition of high skewness, for example, random variables

X1  and X2  were drawn from gamma (1.5,�) and gamma (3,�) distributions,

respectively.  The COMPASS score X was defined as X1 / (X1 + X2), and was
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distributed as a beta (1.5,3) random variable. Because X was continuous,

ranging from 0 to 1, it was multiplied by 99 and rounded to the nearest integer

to obtain a COMPASS score. Table 1 shows the actual skewness for each

placement group.

2) A logistic regression function was used to calculate P̂  using the obtained

COMPASS score (X).  The “slope” parameters (�1) were selected to be

representative of those observed for the data of institutions participating in

ACT’s Course Placement Service.  These parameters were fixed to be .12 and

.03, respectively, for the steep and flat slope conditions.  The “intercept”

parameters were then found by solving for �0 in the logistic function

1
10 )]exp(1[ �

���� X��� , with 5.��  and 32�X .  These parameters were

fixed to be –3.84 and -.96, respectively, for the steep and flat slope conditions.

Using these slope and intercept parameters to generate data ensured that when

logistic curves were subsequently fitted to the data, their inflection points

(corresponding to the optimal cutoff scores) would occur near a COMPASS

score of 32.  Table 1 contains the (fitted) logistic parameter estimates.

3) Using the probability calculated in Step 2, a random variable Y was selected

from a Bernoulli distribution with PY ˆ)1Pr( �� , for each value of X.  Course

success was represented by 1�Y ; failure by 0�Y .

4) Steps 1 through 3 were repeated 1000 times.  Placement groups of size n=500

or n=100 were randomly selected from the “population” of 1000 generated

observations consisting of COMPASS score/course outcome (x,y) pairs.  The

population was intended to represent the entire freshman class at an institution
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from which a placement group is selected.  More than 1000 observations were

generated initially to replace those that were eliminated because they were

below 16 (chance level).

After the data were generated and placement groups selected, P̂ , Â , Ŝ ,  and an

optimal cutoff score were calculated for each placement group by first fitting logistic

curves to the generated data.  Note that most optimal cutoffs varied from the target cutoff

of 32 due to random error (see Table 1).

Truncation Simulation

Truncation below K�.  For the portion of the conditional COMPASS distribution

below K�, two truncation conditions were used.  First, a baseline truncation condition was

defined similar to that in Schiel and King (1999), where 0%, 25%, 50%, and 75% of

observations were removed from 4 respective score intervals that were progressively

more distant from K�.  Conditions utilizing the baseline condition paired with each level

of truncation above K� are illustrated in Panel A of Figure 2. The second truncation

condition used was hard truncation, in which all observations below K� were deleted (see

Panel B of Figure 2).
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FIGURE 2.  Score Distributions Under Seven Truncation Conditions

A: Baseline Truncation Below K� Paired With Truncation Conditions Above K�  

B: Hard Truncation Below K� Paired 
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Truncation above K�.  Above K�, five truncation conditions were paired with the

baseline condition below K�, as illustrated in Panel A of Figure 2.  The COMPASS score

intervals were defined by examining a percentage polygon of the empirical COMPASS

data described above.  Endpoints of the intervals corresponded to slight fluctuations in

the otherwise smooth curve of the polygon.  The intervals were: 32-39, 40-48, 49-61, and

62-99, and they contained 46%, 32%, 14%, and 8%, respectively, of the observations

above K�.  Intervals for placement groups were defined so that they had widths similar to

those of the empirical distribution.  For placement groups with estimated optimal cutoff

scores other than 32, widths for the first 3 intervals were maintained, although the

locations of the intervals changed as a function of K�.

The empirical data used to define the four intervals above K� were considered to

represent an “intermediate” or “typical” truncation condition, which we called a “60%”

truncation condition.  It seems reasonable to assume that this degree of truncation would

occur above the cutoff in many two-stage placement systems.  Of course, truncation

could be more or less severe than this.  We wanted the intervals in the (simulated)

intermediate truncation condition to contain percentages of observations as noted above

(46%, 32%, 14%, and 8%).  In addition, we wanted truncation to proceed in 20%

increments starting from a baseline truncation condition.  For example, 20% of the

observations from the baseline condition would be randomly selected and then removed

to create a “20%” truncation condition.  Twenty percent of the observations from the

20% condition would then be removed to create a “40%” condition, and so on.  In order

to accomplish these goals, we defined the baseline condition above K� such that 10%,

35%, 75%, and 85% of observations were removed from four respective intervals
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progressively more distant from K� in the nontruncated placement group distribution.  An

80% truncation condition was used to examine the effects of truncation beyond the

intermediate condition.

Due to the fact that placement group distributions were similar in shape but not

identical, maintaining interval widths above K� and using the same amount of truncation

to create baseline conditions resulted in somewhat different percentages of observations

for subsequent truncation conditions.  However, these differences were not substantial

and therefore did not likely influence the results.

Panel B of Figure 2 illustrates that hard truncation below K� was paired with two

truncation conditions above K�.  These combinations were chosen to represent moderate

and extreme truncation conditions.

Five hundred data sets of appropriate sample size were simulated for each

combination of the 11 placement groups and 7 truncation conditions, by randomly

selecting and then removing observations within each of the intervals shown in Figure 2.

Table 2 contains truncation sample sizes, by placement group and truncation condition.

Depending on the shape of the placement group distribution and the location of the

optimal cutoff score, truncation samples varied considerably in size, ranging from 10

(Placement Group 7, Hard/80%; Placement Group 10, Hard/80%) to 272 (Placement

Group 1, Baseline/baseline).
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TABLE 2

Truncation Sample Sizes, by Placement Group and Truncation Condition

Placement
Group

N before
truncation

Hard/
baseline

Hard/
80%

Baseline/
baseline

Baseline/
20%

Baseline/
40%

Baseline/
60%

Baseline/
80%

1 500 160 65 272 239 214 193 177
2 500 157 65 256 224 199 179 164
3 500 170 69 221 186 159 137 120
4 500 172 70 256 221 194 171 154
5 500 174 72 251 216 189 166 149
6 500 164 68 246 213 187 165 150
7 100 25 10 60 54 51 48 45
8 100 28 11 47 41 38 33 30
9 100 35 15 45 37 32 27 25
10 100 26 10 55 50 45 42 39
11 100 28 12 41 35 31 29 25

Figure A in the appendix provides additional information about the truncation

process.  It illustrates this process for Placement Group 1, beginning with no truncation

and ending with the Hard/80% truncation condition.  Figure A shows how the truncation

sample sizes in Table 2 were obtained for this particular placement group.

Comparing Placement Group and Truncation Sample Validity Statistics

Logistic curves were fit to each of the 500 data sets that were simulated for each

placement group/truncation condition combination. Validity statistics were calculated

using the methods described in Sawyer (1996).  Median validity statistics (over 500

simulations) were then calculated for each truncation condition and compared to those

obtained for the respective placement groups, using procedures described in Schiel and

King (1999).  For example, the placement group P̂ s were subtracted from the

baseline/80% truncation condition (median) P̂ s at each COMPASS score point (16-99).

The  (unweighted) mean difference over 84 score points ( P̂� ) was then calculated, and

the mean of the absolute values of the differences was also calculated.  Finally, estimated

optimal cutoff scores were identified for the placement group (the “true” cutoff) and for
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each truncation condition.  Differences between optimal cutoffs for each truncation

condition and its corresponding true optimal cutoff were calculated.

Results

Estimated Probabilities of Success

Figure 3 illustrates the effects of truncation on P̂  for Placement Group 3 (steep

slope, zero skewness, n=500).  Of all the placement groups, this one was least affected by

truncation with respect to estimating P̂ .  The solid curve in the figure represents

probabilities for the nontruncated placement group.  Probabilities for the seven truncation

conditions are represented by dashed or dotted curves, which are nearly identical.

Clearly, truncation had little effect on estimating P̂  for this placement group.
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FIGURE 3.  Effects of Truncation on
Estimated Conditional Probability of Success

(Placement Group 3: Steep Slope, Zero Skewness, N=500)
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Contrast the logistic regression curves for Placement Group 3 with those of Group

10, which are displayed in Figure 4.  Under these conditions (flat slope, high skewness,

n=100), P̂  was relatively poorly estimated.  The hard/80% truncation condition (which

included only 10 observations) had the least accurate estimates of P̂  in this figure.
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FIGURE 4.  Effects of Truncation on
Estimated Conditional Probability of Success

(Placement Group 10: Flat Slope, High Skewness, N=100)
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Table 3 summarizes the effects of truncation on P̂  for all placement groups.

Consistent with previous truncation research, placement groups with large samples

yielded more accurate estimates of P̂  than did those with small samples.  Irrespective of

sample size, steep slope conditions produced more accurate estimates than did flat slope

conditions.  This finding is also consistent with previous research.  With respect to P̂ , the

three groups least affected by truncation were 1, 2, and 3; the three groups most affected
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were 8, 11, and 10.  Mean P̂�  ranged from .0003 (Group 3; baseline/60%) to .209

(Group 10, hard/80%).  The relationship between extent of truncation and accuracy of P̂

was similar to that identified in previous research, in that increased truncation was

associated with decreased P̂  accuracy.

TABLE 3

Effects of Truncation on Estimated Probability of Success,
by Placement Group and Truncation Condition

Placement group Truncation

No. Slope Skew. N Mean
Hard/

baseline
Hard/
80%

Baseline/
baseline

Baseline/
20%

Baseline/
40%

Baseline/
60%

Baseline/
80%

1 Steep High 500 P̂� .0031 -.0003 .0005 -.0013 -.0006 -.0021 -.0027
P̂� .0031 .0036 .0015 .0013 .0007 .0021 .0028

2 Steep Med. 500 P̂� -.0031 -.0063 -.0036 -.0071 -.0085 -.0082 -.0079
P̂� .0104 .0060 .0096 .0094 .0117 .0110 .0106

3 Steep Zero 500 P̂� .0037 .0003 .0029 .0009 .0000 .0000 .0000
P̂� .0053 .0029 .0008 .0009 .0006 .0003 .0019

4 Flat High 500 P̂� -.0101 -.0084 -.0059 -.0125 -.0160 -.0104 -.0066
P̂� .0101 .0059 .0099 .0139 .0178 .0112 .0097

5 Flat Med. 500 P̂� .0048 .0058 .0053 .0042 .0027 .0055 .0051
P̂� .0364 .0396 .0100 .0084 .0056 .0068 .0053

6 Flat Zero 500 P̂� -.0189 .0008 -.0194 .0033 .0078 .0135 .0203
P̂� .0230 .0222 .0173 .0191 .0173 .0182 .0204

7 Steep High 100 P̂� -.0108 -.0067 -.0168 -.0116 -.0144 -.0179 -.0284
P̂� .0464 .0622 .0067 .0117 .0144 .0184 .0291

8 Steep Med. 100 P̂� -.0170 .0079 -.0229 .0105 .0113 .0121 .0132
P̂� .0475 .0575 .0193 .0211 .0221 .0216 .0229

9 Steep Zero 100 P̂� -.0084 .0070 -.0205 .0076 .0110 .0147 .0145
P̂� .0145 .0429 .0077 .0076 .0110 .0147 .0145

10 Flat High 100 P̂� .0443 .0368 .0629 .0275 .0362 .0263 .0695
P̂� .1507 .2090 .0469 .0340 .0381 .0307 .0754

11 Flat Zero 100 P̂� .0375 .0231 .0325 .0266 .0264 .0292 .0351
P̂� .0375 .0345 .0286 .0350 .0406 .0393 .0525
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Estimated Accuracy Rates

Figure 5 displays the effects of truncation on Â  for Placement Group 3 (steep

slope, zero skewness, n=500), whose estimates were more accurate overall than those of

other groups.  The maximum Â  for this placement group (corresponding to the “true”

cutoff score) occurred at a COMPASS score of 32.  For all truncation conditions except

one (hard/baseline), the estimated optimal cutoff score was equivalent to the true optimal

cutoff.  Although not discernible in the figure, the optimal cutoff for the Hard/baseline

condition was underestimated by one COMPASS score point.
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FIGURE 5.  Effects of Truncation on
Estimated Accuracy Rate

(Placement Group 3: Steep Slope, Zero Skewness, N=500)
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The effects of truncation on Â  for a placement group with relatively inaccurate

estimates (Group 10; flat slope, high skewness, n=100) are shown in Figure 6.  Locations

of maximum Â  for the Hard/baseline and Hard/80% conditions (at COMPASS scores of

46 and 47, respectively) were considerably different from those for the other truncation

conditions (between scores of 35 and 38).
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FIGURE 6.  Effects of Truncation on
Estimated Accuracy Rate

(Placement Group 10: Flat Slope, High Skewness, N=100)
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The effects of truncation on Â  are summarized for all placement groups in Table

4.  As was found for P̂ , more precise estimates of Â  were associated with large sample

placement groups.  Steep slope placement groups generally had more precise estimates of

Â s than did flat slope placement groups, irrespective of sample size, but there were some

exceptions.  For example, Â s for Group 4 (flat slope, high skewness, n=500) were

somewhat more precise than those for Group 2 (steep slope, medium skewness, n=500). 
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The three placement groups with the most precise estimates of Â  were 1, 3, and 4; the

least precise estimates were found for Groups 7, 10, and 11.  Mean Â�  ranged from

.0003 (Placement Group 3; baseline/40% and baseline/60%) to .1216 (Group 10;

hard/80%).

TABLE 4

Effects of Truncation on Estimated Accuracy Rate,
by Placement Group and Truncation Condition

Placement group Truncation

No. Slope Skew. N Mean
Hard/

baseline
Hard/
80%

Baseline/
baseline

Baseline/
20%

Baseline/
40%

Baseline/
60%

Baseline/
80%

1 Steep High 500 Â� -.0028 .0020 -.0007 .0008 .0001 .0012 .0012

Â� .0037 .0027 .0009 .0014 .0006 .0025 .0031

2 Steep Med. 500 Â� -.0035 -.0028 -.0007 .0004 -.0000 .0008 -.0002
Â� .0059 .0042 .0074 .0080 .0094 .0098 .0084

3 Steep Zero 500 Â� -.0032 -.0015 -.0002 -.0007 -.0002 .0003 .0001

Â� .0037 .0018 .0005 .0008 .0003 .0003 .0006

4 Flat High 500 Â� .0018 .0047 -.0009 -.0020 -.0021 -.0020 -.0031

Â� .0049 .0063 .0040 .0043 .0063 .0029 .0034

5 Flat Med. 500 Â� .0204 .0213 .0033 .0032 .0016 .0004 -.0012
Â� .0213 .0223 .0035 .0032 .0019 .0034 .0039

6 Flat Zero 500 Â� .0113 .0100 -.0082 -.0098 -.0097 -.0101 -.0101

Â� .0189 .0183 .0087 .0106 .0115 .0142 .0177

7 Steep High 100 Â� .0391 .0471 .0038 .0063 .0074 .0083 .0100

Â� .0433 .0552 .0077 .0130 .0149 .0195 .0278

8 Steep Med. 100 Â� .0314 .0397 .0020 -.0008 .0002  -.0023 -.0016
Â� .0387 .0508 .0080 .0119 .0109 .0134 .0131

9 Steep Zero 100 Â� .0077 .0117 -.0042  -.0043 -.0064 -.0077 -.0080

Â� .0091 .0140 .0050 .0073 .0112 .0143 .0162

10 Flat High 100 Â� .0897 .1146 .0122 .0080 .0017 .0047 .0071

Â� .0957 .1216 .0139 .0100 .0135 .0091 .0246

11 Flat Zero 100 Â� -.0131 -.0035 .0023 .0041 .0052 .0023 .0067
Â� .0263 .0214 .0218 .0260 .0289 .0297 .0358
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Optimal Cutoff Scores

Estimated optimal cutoff scores are displayed in Table 5, by placement group and

truncation condition.  The difference between the estimated optimal cutoff for a particular

truncation condition and the true cutoff (shown in the “None” column for each placement

group) is displayed in parentheses beneath the corresponding cutoff.

TABLE 5

Estimated Optimal Cutoff Scores, by Placement Group
(Difference from “True” Cutoff)

Placement group Truncation

No. Slope Skew. N None
Hard/

baseline
Hard/
80%

Baseline/
baseline

Baseline/
20%

Baseline/
40%

Baseline/
60%

Baseline/
80%

1 Steep High 500 32 32
(0)

32
(0)

32
(0)

32
(0)

32
(0)

32
(0)

33
(1)

2 Steep Med. 500 33 33
(0)

33
(0)

33
(0)

34
(1)

34
(1)

34
(1)

34
(1)

3 Steep Zero 500 32 31
(-1)

32
(0)

32
(0)

32
(0)

32
(0)

32
(0)

32
(0)

4 Flat High 500 27 26
(-1)

25
(-2)

26
(-1)

27
(0)

25
(-2)

27
(0)

25
(-2)

5 Flat Med. 500 30 33
(3)

32
(2)

30
(0)

30
(0)

31
(1)

30
(0)

29
(-1)

6 Flat Zero 500 39 43
(4)

43
(4)

38
(-1)

36
(-3)

35
(-4)

38
(-1)

36
(-3)

7 Steep High 100 36 37
(1)

39
(3)

36
(0)

36
(0)

37
(1)

37
(1)

37
(1)

8 Steep Med. 100 33 36
(3)

36
(3)

33
(0)

32
(-1)

32
(-1)

32
(-1)

32
(-1)

9 Steep Zero 100 32 33
(1)

34
(2)

31
(-1)

31
(-1)

30
(-2)

31
(-1)

31
(-1)

10 Flat High 100 34 46
(12)

47
(13)

38
(4)

36
(2)

36
(2)

35
(1)

35
(1)

11 Flat Zero 100 35 31
(-4)

29
(-6)

34
(-1)

34
(-1)

37
(2)

33
(-2)

35
(0)
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Optimal cutoff scores were estimated very accurately for Placement Groups 1, 2,

and 3 over all truncation conditions, deviating no more than one COMPASS score point

from the true cutoff.  These results are well within one standard error of measurement

(SEM) for COMPASS, which ranges from about five to six for the Writing Skills,

Reading, and Algebra tests.  Cutoffs were accurately estimated for size n=100 placement

groups when the logistic curve was steep.  Interestingly, the results for Group 11 were

more accurate than those for Group 6; these groups differed only in their initial sample

sizes (100 and 500, respectively).  Generally, one would expect more accurate cutoff

estimates to be associated with large placement groups.

The only placement groups yielding somewhat inaccurate cutoff estimates (i.e., 6

or more points above or below the true cutoff) were Groups 10 and 11, both of which had

flat logistic curves and small sample sizes.  The Hard/80% condition produced an optimal

cutoff that overestimated the Placement Group 10 true cutoff by 13 scale score points; a

12-point overestimate and a 6-point underestimate were produced by the Hard/baseline

and Hard/80% conditions in Groups 10 and 11, respectively.

Estimated Success Rates

The most accurate estimates of Ŝ , as measured by mean Ŝ� , were found for

Placement Groups 1, 3, and 9.  These groups had steep logistic curves in common, but

differed in initial sample size; Groups 1 and 3 contained 500 observations, whereas

Group 9 contained 100.  The least accurate estimates of Ŝ  were found for Groups 7, 10,

and 11, all of which initially contained 100 observations.  Two of these groups had flat

logistic curves.
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The characteristics associated with accurate estimates of Ŝ , with a few

exceptions, were similar to those associated with accurate Â  and P̂ : large placement

group samples and steep logistic curves.  Mean Ŝ�  ranged from .0001 (Group 3;

baseline/60%) to .1784 (Group 10; hard/80%).  These statistics are summarized, by

placement group, in Table A in the appendix.

Discussion

It was shown in this study that validity statistics and optimal cutoff scores can be

estimated with reasonable accuracy from the truncated data of two-stage course

placement systems.  For example, optimal cutoff scores were under- or overestimated by

no more than 4 COMPASS score points, over all combinations of distribution shape and

logistic regression curve, even when baseline truncation below K� was paired with 80%

truncation above K�.  It was only when hard truncation was paired with either baseline or

80% truncation that optimal cutoff score estimates differed substantially from true

cutoffs.  Moreover, substantial differences in estimated optimal and true cutoffs were

found only for placement groups having flat logistic curves and small sample sizes under

these two truncation conditions.  Consistent with previous research (Schiel, 1998; Schiel

& King, 1999), more accurate estimates of validity statistics and optimal cutoffs were

associated with large sample, steep logistic curve placement groups.

The three least accurate estimated optimal cutoff scores (within 12, 13, and 6

score points of corresponding true cutoffs) occurred for truncation samples containing 26,

10, and 12 observations, respectively.  It is unlikely that a postsecondary institution

would use logistic regression and decision theory to evaluate test score/course outcome

relationships for such small samples, because the accuracy of estimated logistic
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regression parameters declines significantly for very small sample sizes (Houston, 1993).

Optimal cutoff scores over- or underestimated to this extent therefore have a small

likelihood of occurring in practice.  A more typical over- or underestimate, given the

results of this study, would be about four COMPASS score points.

What are the practical implications of an institution employing an optimal cutoff

score for a standard course that is over- or underestimated by four COMPASS score

points?  One way to answer this question is by examining accuracy rates.  Considering

Placement Group 10 (flat slope, high skewness, n=100) as an example, the

Baseline/baseline truncation condition, based on 55 observations, yielded a median

estimated optimal cutoff of 38.  The median Â  corresponding to this cutoff indicated that

58.2% of students would be correctly placed if it were used.  The true cutoff for Group 10

was 34; the corresponding Â , expressed as a percentage, was 58.1.  Thus, in this

instance, there would be no substantive effect of using a cutoff score that was

underestimated by four COMPASS score points.  Note that absolute differences between

the median Â s for the other placement group that had four-point over- or underestimates

(Group 6; flat slope, zero skewness, n=500) were .005 or less, similarly suggesting no

substantive effect of using a cutoff score within 4 score points of the true cutoff.

Postsecondary institutions that experience moderate truncation (i.e.,

baseline/baseline to baseline/80%) in two-stage course placement systems can expect to

estimate validity statistics and optimal cutoff scores with reasonable accuracy.  It is only

when truncation is extreme (i.e., hard/baseline or hard/80%), logistic regression curves

are flat, and sample sizes are very small (e.g., about 25 or less) that institutions risk

obtaining optimal cutoff scores that differ substantively from those of nontruncated
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placement group distributions.  One might consider a “substantive” difference to be two

or more percentage points between the Â  corresponding to a true cutoff and the Â  for an

estimated optimal cutoff.  In a placement group consisting of about 100 students, for

example, a two-percentage point decrease in Â  would mean that about 2 students would

be incorrectly placed as a result of estimation error.

In a two-stage course placement system, truncation occurs both below and above

the cutoff score on the placement test, thereby differentiating such a system from a one-

stage system.  One might therefore expect that the effect of truncation on estimated

validity statistics in a two-stage system would differ from that occurring in a one-stage

system, which is indeed the case.  When the results of this study are compared with those

of previous studies that examined the effects of truncation in one-stage systems, one

noteworthy difference pertains to the accuracy of the respective optimal cutoff scores.  In

Schiel and King’s (1999) one-stage system research, for example, the largest difference

between a true cutoff and an estimated optimal cutoff was 17 ACT Assessment score

points.  This is larger than the largest difference observed in the present study (13

COMPASS score points; Group 10, hard/80%).  Both of these results were obtained from

placement groups with flat logistic curves and a high degree of skewness.

The difference between these results becomes intriguing when one considers that

the Schiel and King result was based on a joint distribution of ACT scores and course

outcomes containing considerably more observations than did the COMPASS

score/course outcome distribution in the present study (330 vs. 10, respectively).  One

might expect a more accurate estimate to be associated with a larger sample, but this is

clearly not the case.  Moreover, the score scales of the two instruments differ
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considerably.  The ACT Assessment score scale has 36 possible points, and a SEM (for

the Composite) of about 1.  The COMPASS score scale, on the other hand, has 84

possible points and a SEM of about 6.  These characteristics suggest that the

underestimation of the optimal ACT cutoff in the example from Schiel and King is

considerably greater, in an absolute sense, from the underestimation occurring in the

COMPASS example in the present study.

What might account for the difference between two-stage and one-stage

placement system results?  One possibility is the shape of the test score/course outcome

distribution; the ACT Assessment/course outcome distribution in the example from the

former study was highly negatively skewed, whereas the COMPASS/course outcome

distribution in the present study example is highly positively skewed.  In one-stage

systems, higher negative skewness is associated with more accurate estimates of validity

statistics.  The reason for this is that when high negative skewness is present, a greater

percentage of observations lie in the nontruncated region of the joint distribution.  Such

an association is less evident in a two-stage system, because the skewness is positive and

truncation occurs in both tails of the distribution.  It is possible that future research could

provide additional insight into relationships between truncation and distribution shape.

Nevertheless, it is important for interpretational purposes to consider that one-stage

placement systems are inherently different from two-stage systems.  Given the findings

presented here, two-stage systems appear to be more resistant to the effects of truncation

in the context of estimating course placement validity statistics.

To alleviate estimation problems that might result from soft truncation above K�,

institutions could consider administering the placement test to a group of students (e.g.,



30

an entering freshman class) who scored at or above K on the screening test.  Course

placement decisions would not have to be changed for these students.  Institutions could

then estimate validity statistics and optimal cutoff scores from a distribution of placement

test scores and course outcomes that was not truncated above K�.  A disadvantage to this

approach is, of course, that institutions would have to test a larger number of students

than usual with the placement test.  Such an approach might be of interest to institutions

whose data are severely truncated, based on small samples, and yield flat logistic curves,

as they have the greatest risk of estimating inaccurate optimal cutoff scores.  Most

institutions, however, are not likely to benefit much from administering the placement

test to students who scored at or above K, because truncation will affect their estimates

only minimally.

In one-stage placement systems, Â  is a function of conditional probabilities

estimated from the data of students who completed the standard course and the empirical

distribution of test scores for the placement group, which includes the scores of students

who did not complete the standard course.  In two-stage systems, although both a

screening test and a placement test are used, Â  is typically calculated just as it is in a

one-stage system, using the distribution of placement test scores only.  As a consequence,

this statistic does not reflect the standard course outcomes of those students who scored

high on the screening test, were placed directly into the standard course, and therefore did

not have to take the placement test.  This Â  could therefore differ somewhat from one

that was instead based on both screening and placement test data.

Research that examines alternative ways of calculating Â  in two-stage placement

systems would be beneficial, but would not likely alter the conclusions reached in this
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study, which controlled for this potential methodological problem.  The placement groups

in this study differed deliberately from those of actual two-stage placement systems in

that they contained test scores and standard course outcomes for the full distribution of

placement test scores, including those that would likely have been earned by students

who earned high screening test scores and did not take the placement test.  Consequently,

the placement test score distributions for the placement groups, which would ordinarily

be truncated with respect to the screening test in a two-stage system, were not truncated

in this study.  This allowed more precise comparisons between true (placement group)

Â s and those reflecting the effects of truncation.

Another reason that alternative methods of calculating Â  would not change this

study’s conclusions is that the effects of truncation were investigated in this study by

considering differences between Â s (and other validity statistics) calculated when

truncation was and was not present.  The size of such differences should remain relatively

constant across different methods of calculating a particular validity statistic, provided

that the same method is applied consistently under both nontruncated and truncated

conditions. 
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TABLE A

Effects of Truncation on Estimated Success Rate,
by Placement Group and Truncation Condition

Placement group Truncation

No. Slope Skew. N Mean
Hard/

baseline
Hard/
80%

Baseline/
baseline

Baseline/
20%

Baseline/
40%

Baseline/
60%

Baseline/
80%

1 Steep High 500 Ŝ� .0016 .0007 -.0009 -.0010 -.0006 -.0018 -.0027
Ŝ� .0016 .0017 .0009 .0010 .0006 .0018 .0027

2 Steep Med. 500 Ŝ� -.0072 -.0058 -.0083 -.0085 -.0104 -.0099 -.0095
Ŝ� .0072 .0058 .0083 .0085 .0104 .0099 .0095

3 Steep Zero 500 Ŝ� -.0004 .0009 -.0003 .0002 .0002 -.0000 .0007
Ŝ� .0012 .0009 .0003 .0002 .0002 .0001 .0007

4 Flat High 500 Ŝ� -.0113 -.0042 -.0116 -.0164 -.0210 -.0138 -.0103
Ŝ� .0113 .0042 .0116 .0164 .0210 .0138 .0103

5 Flat Med. 500 Ŝ� .0244 .0265 .0101 .0080 .0053 .0077 .0060
Ŝ� .0263 .0285 .0101 .0080 .0053 .0077 .0060

6 Flat Zero 500 Ŝ� -.0073 -.0088 -.0103 -.0094 -.0040 .0022 .0111
Ŝ� .0118 .0119 .0113 .0112 .0080 .0078 .0111

7 Steep High 100 Ŝ� .0087 .0057 -.0065 -.0118 -.0136 -.0190 -.0305
Ŝ� .0188 .0245 .0065 .0118 .0136 .0190 .0305

8 Steep Med. 100 Ŝ� -.0004 -.0045 .0071 .0084 .0086 .0090 .0096
Ŝ� .0107 .0148 .0071 .0084 .0086 .0090 .0096

9 Steep Zero 100 Ŝ� .0012 .0046 .0006 .0035 .0051 .0076 .0090
Ŝ� .0039 .0078 .0012 .0035 .0051 .0076 .0090

10 Flat High 100 Ŝ� .1229 .1641 .0573 .0418 .0489 .0382 .0965
Ŝ� .1352 .1784 .0573 .0418 .0489 .0382 .0965

11 Flat Zero 100 Ŝ� .0227 .0327 .0326 .0391 .0426 .0426 .0550
Ŝ� .0227 .0327 .0326 .0391 .0426 .0426 .0550
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FIGURE A. Truncation Example 
(Placement Group 1: Steep slope, high skewness, n=500)
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Twenty percent
of the obs. from
the
Baseline/baseline
condition have
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removed from
each interval
above K�.

K�=32
1             16-20  21-24 25-27 28-31 32----39 40-----48 49-------61 62-------------99
  n = 13      30       23      46
 n =112
  n =127
69 33 17



36

FIGURE A (continued). Truncation Example 
(Placement Group 1: Steep slope, high skewness, n=500)

D.  Baseline/40%

E.  Baseline/60%

F.  Baseline/80%

6

Twenty percent
of the obs. from
the Baseline/20%
condition have
been randomly
selected and
removed from
each interval
above K�.

K�=32
1           16-20  21-24 25-27 28-31 32----39 40-----48 49-------61 62-------------99
  n = 13      30       23      46
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5
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of the obs. from
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above K�.
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Twenty percent
of the obs. from
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condition have
been randomly
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each interval
above K�.

K�=32
1           16-20  21-24 25-27 28-31 32----39 40-----48 49-------61 62-------------99
  n = 13      30       23      46
 n =112
  n =65
35 17 9
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FIGURE A (continued). Truncation Example 
(Placement Group 1: Steep slope, high skewness, n=500)
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