






Alternatives to the Grade Point Average as Measures of Academic Achievement in College

GPA, a linear combination of grades assigned in different courses, is not an ideal measure

of student achievement because it reflects not only academic achievement, but also course taking

strategies and instructor grading practices. Unless course selection is not allowed and all

instructors are willing to adhere to a universal grading standard, GPAs for different students do

not necessarily have the same meaning. 

Several problems are associated with the use of GPA as a measure of academic

achievement in college. One is that it is difficult to select candidates from different departments

or different institutions for scholarship or employment purposes (e.g., Caulkins, et al., 1996).

Different teachers/professors have different grading criteria according to their own perception of

student achievement (Hoover, Roller, Liddell, Moore, McCarthy, and Hlebowitsh, 1999).

Perhaps due to the composition of “like-minded” individuals, departments vary in their grading

tendencies (Hoover, et al., 1999; Johnson, 1997). Grade point averages are, therefore, not strictly

comparable among students, particularly across departments or majors.  

The use of GPA as a measure of academic achievement also drives grade inflation. It has

been suggested that instructors lower their standards in order to improve their course ratings by

students. Students may shop for courses taught by leniently grading instructors (e.g., Johnson,

1997) or switch to departments that tend to give high grades (e.g., Young, 1993). As a result,

grades may be raised without reflecting increased students’ abilities, a phenomenon known as

grade inflation (Bejar & Blew, 1981). Note that grade inflation is not necessary specific to the

college level. Ziomek and Svec (1995) documented a similar phenomenon at the high school

level.  
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Relying on GPA as a measure of academic achievement also makes it more difficult to

evaluate college admissions tests (e.g., Young, 1993; Stricker, Rock, Burton, Muraki, & Jirele,

1994). Admissions tests are rightly expected to predict grades but should not be expected to

predict whether a student will choose an easier curriculum. 

To make course grades more comparable, a viable alternative to imposing a common

grading standard on all instructors (or to denying course selection by students) is to adjust GPA

for differential course difficulty (Caulkins, Larkey, and Wei, 1996). Adjusted-GPA, like GPA,

represents student achievement on a single (unidimensional) scale and is constructed entirely

from course grade data. An adjusted-GPA does not resolve the underlying problem of

representing an inherent multidimensional domain with respect to the specific subject areas with

a simple unidimensional measure. Other dimensions may also include non-cognitive

characteristics such as attending class and turning in homework. However, it is better than GPA

because it reduces the error arising from differential course-taking patterns and variation in

course difficulty. It is hoped that by leveling course difficulty, incentives other than learning the

course content will be discouraged in the long run. Immediate effects of adjusting GPA include

improved predictive validity of college admission tests (Young, 1990a; Caulkins, et al., 1996;

Johnson, 1997) and reduced differential predictive validity for gender (Young, 1991). 

Most GPA adjustment methods operate on the premise that an achievement index should

reflect relative course ranks of students who took the same classes (e.g., Caulkins, et al, 1996;

Johnson, 1997), a unidimensional notion of achievement. These methods often adjust for the

different grading stringency or difficulty level of the classes. Methods of particular interest to

this study are summarized in the following section. For recent comprehensive reviews of
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adjustment methods, see Young (1993) and Stricker, Rock, Burton, Muraki, and Jirele (1994), or

a more distant one, see Linn (1966). 

Grade-Adjustment Methods

Young (1990a) proposed an inventive use of Item Response Theory (IRT), in which

course grades are treated as item scores and estimated theta becomes the intended adjusted

achievement index. Young (1990a) first factor analyzed the course grades and separated the

courses into relatively unidimensional groups based on the factor analysis results, then applied a

restricted version of Samejima’s (1969) Graded Response Model on the separated groups of

courses. He found that the predictability of the IRT-based GPA from SAT-V, SAT-M, and high

school GPA exceeded that of the unadjusted GPA. The increase in squared multiple correlation

(R2) ranged from .0015 to .0955, from negligible to sizable, depending on possibly a number of

factors which included the distribution of grades, number of courses involved in the adjustment,

number of courses taken by each student, or even the clarity of the defining trait (Young, 1990a). 

Moreover, Young (1990a) advocated that other polytomous IRT models may be

applicable to grade adjustment. However, only Samejima’s (1969) graded response model in the

polytomous IRT family has been examined. Therefore, this study intends to expand the IRT-

based category applied to grade adjustment. Models with different levels of complexity in terms

of number of model constraints or, alternatively, number of free model parameters (model

parameters to be estimated from the data) involved are selected. The rating scale model

(Andrich, 1978) has the fewest free parameters (the most model constraints), followed by the

partial credit model (Masters, 1982), and then the generalized partial credit model (Muraki,
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1992) and the graded response model (Samejima, 1969). The latter two models have the same

number of free parameters (see Appendix A for a list of the models used for adjusting grades).

Suppose there are k distinct grades within each course, and that there are m courses. The

rating scale model has k-1 step parameters (steps between grades are constrained to be the same

across courses) and m location or difficulty parameters, one for each course. In the partial credit

model, the steps between grades are allowed to vary across courses, and the location parameters

are embedded in the steps for different courses; therefore, it has m(k-1) parameters. Neither the

rating scale nor the partial credit model has course discrimination parameters, or implicitly, the

course discrimination parameters are the same across courses and equal to 1 (the so-called

polytomous Rasch models). The generalized partial credit model and the graded response model,

on the other hand, have m course discrimination parameters (slopes), one for each course, in

addition to m(k-1) “step” parameters (intercepts).   

The IRT models aforementioned allow the distances or steps between grades assigned

within courses to vary. The models proposed by Caulkins, Larkey, and Wei (1996), however,

constrained the steps between grades to be the same within classes. The additive, multiplicative

and combined methods provided by Caulkins, et al. can be respectively represented by the

equations: ijjiijx ��� ��� , (i=1,…,N; j=1,…,m); ijjiijx ��� �� / , (i=1,…,N; j=1,…,m); and

ijjjiijx ���� ��� / , (i=1,…,N; j=1,…,m), where ijx  represents the observed grade for person i

in course j, i�  is the person parameter or the adjusted GPA, j�  and j�  are course parameters

representing course difficulties or grading standards, and ij� is the error term. The j�  parameter

controls the magnitude of the grade steps across courses, while the j�  parameter adjusts the

location of the courses. Altogether, there are m course parameters for the additive and

multiplicative models, and 2m parameters for the combined model. The Caulkins, et al. models
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are referred to as linear models because the adjusted GPA using these models has a linear

relationship to the unadjusted GPA. The authors listed least-squares solutions (minimizing sum

of squared error over persons and courses) for the person and course parameters and the

unknown parameters can be estimated through simple iterative procedures with reasonable initial

estimates. 

Caulkins, et al. (1996) tested their models with a cohort at Carnegie Mellon University

and found that adjusted GPAs had higher correlations than did unadjusted GPA with high school

GPA, SAT-M, SAT-V, and high school rank. The authors also compared their additive method

with the IRT based method suggested by Young (1990a) and found that the predictability of both

IRT and linearly adjusted GPAs by high school GPA, SAT-M, and SAT-V improved over

unadjusted GPA by the same predictors. Furthermore, the increase in R2 was larger for the

additive model than that for the IRT-based method. Therefore, the simpler linear models with

fewer free parameters (when the number of distinct grades involved in adjustment is larger than

2) may be superior to the relatively more complicated IRT method in adjusting GPA. 

However, research on the two categories of grade adjustment methods, IRT-based and

linear, has been exploratory. Linn (1966) called for studies of grade adjustment methods to cross-

validate results. His call, however, was largely ignored or forgotten by the studies conducted

after his review. Therefore, previous findings about grade adjustment did not take into account

same-sample effects. Had same-sample effects been corrected, actual improvement in R2 and

relative performance of the methods may have been different. The current study attempted to

incorporate the cross-validation criterion in addition to the multiple correlation criterion (with a

standardized test, high school GPA, and/or high school rank) commonly used in grade
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adjustment studies. Results of one cohort will be cross-validated from course parameters

estimated from a previous cohort. 

The performance of grade-adjustment methods over successive years or cohorts is an

important practical issue. Operational use of adjusted-GPA measures could well involve

applying estimates of course difficulty parameters derived from one cohort to the grade data of a

later cohort. Moreover, regression weights derived from a previous cohort may be used to predict

an incoming cohort’s college achievement for admission or scholarship selection purposes.

Therefore, in addition to cross-validating the course parameter estimates, prediction accuracy of

the different adjusted-GPA measures using regression weights of the preadmission variables

derived from a previous cohort will also be examined.

Furthermore, because consistency of students’ class rank with their relative standings on

the “achievement” continuum is a desired goal, internal order consistency (IOC) rate is also

included as a criterion. IOC rate, defined as the proportion of times in which two students taking

the same course received distinct grades in the same order as their achievement index, represents

a form of the fit of the model to the data. Let “Tot” represent the total number of cases in which

two students received non-tied grades in the same course.  This number includes all possible

pairs of students and does not depend on any achievement measure.  For each achievement

measure, “Hits” is number of pairs (of students who received different grades in the same course)

that were not tied on the given achievement measure, and for which the achievement measure

correctly predicted which student received the higher grade. Algebraically, IOC rate is the

quotient of Hits/Tot.

In summary, the purpose of this study is threefold. First, it expands the IRT-based

category used in grade adjustment. Second, it answers the long neglected call made by Linn
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(1966) by correcting for same-sample effects to provide a more realistic evaluation of the

adjustment methods. Third, it evaluates prediction precision of the adjusted achievement

measures using preadmission variables, an important practical use of college achievement

measure. It is hoped that by reducing errors associated with different grading practices and

different course taking patterns, adjusted GPAs will be more comparable among students. This

study attempts to evaluate these alternative achievement measures under operationally realistic

conditions to substantiate the advantage, or the lack thereof, of using these alternative measures.

In response to the recent debate about grade inflation, this study may provide timely information

to administrators or policy decision-makers.
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Study 1

Method

Source of Data

The data consisted of grades of college freshmen in 21 courses over two consecutive

years, 1995/96 and 1996/97 (’95 and ’96 respectively for brevity). Course grades were reported

on an A to F scale and were coded as A=4 and F=0.  These data were not complete in terms of

representing all of the courses taken by college first-year students, or all of the courses taken by

any given college first-year student. Moreover, the college underwent some unusual changes in

the enrollment requirements for the two cohorts. Therefore, this study is considered exploratory

and will be replicated with other data more typical of college grades. However, they represent

incomplete ordinal data with substantial variation in course difficulty and course-taking patterns.

A total of 1,255 students in the ‘95 cohort and 1,796 students in the ‘96 cohort are represented by

at least one grade. 

In addition to college grade data, ACT Assessment scores and self-reported grades in

high school courses were available for 1,710 of the 1,796 students in the ’96 cohort. The

composite score on the ACT Assessment was used as the admissions test score. Self-reported

high school grades were taken from the Course Grade Information Section of the ACT

Assessment. This section includes 30 high school courses representing standard college

preparatory courses such as English I to IV, advanced courses such as calculus, and ancillary

coursework such as art, music, and foreign languages.

Procedures

College course grade data from the ‘95 and ‘96 cohorts were separately fitted with 4

models using Multilog v.6 (Thissen, 1991): 1) partial credit model with a common slope
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parameter a estimated from the data (PCMA), 2) partial credit model with a common slope

parameter a fixed to 1 (PCM1), 3) generalized partial credit model with all slope parameters free

to vary (GPCM), and 4) graded response model (GRM). It may be worthwhile to note that all

partial credit models are special cases of Bock’s (1972) Nominal model (Thissen & Steinberg,

1986). For model set-up of these models in Multilog, see Multilog manual (Thissen, 1991) and

Thissen and Steinberg (1986). The model set-up for the rating scale model in Multilog is

currently unavailable.

The same data were fitted with the rating scale model (RSBS) using Bigsteps (Wright &

Linacre, 1990). To check whether different constraints and estimation methods used in different

programs may make a difference, the partial credit model analysis was repeated with Bigsteps

(PCBS). However, the Bigsteps program does not perform the generalized partial credit model

and the graded response model. Therefore, results of 6 IRT models were available for further

analyses, three of which are essentially the same models with only differences in how parameters

were estimated or how the models were identified. For a perusal of the different polytomous IRT

models, see van der Linden and Hambleton (1997). In addition, simple iterative procedures based

on Caulkins, et al. (1996) solutions were used to estimate the person and course parameters for

the three linear models: additive, multiplicative and combined. 

Person parameters for the ‘96 cohort were estimated twice, first with course parameters

estimated from the same ‘96 sample (same-sample achievement indices), and then cross-

validated with course parameters estimated from the ‘95 sample (cross-validated achievement

indices). Therefore, the effect of same-sample effects of the course parameter estimates was

examined with all 6 IRT models and 3 linear models for exploratory purpose. Because these data

were not typical of freshman college grades and regression weights derived from such
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uncharacteristic data would not be ideal for operational use, the cross-validity of regression

weights for predicting the achievement measures by the preadmission variables was not

examined in this study.

Multiple correlations of the same-sample and cross-validated college achievement indices

(unadjusted and adjusted college GPAs) with ACT composite score and high school GPA were

computed. Pairwise comparisons of correlations were performed using the Z2
* statistic

documented by Steiger (1980). The Z2
* statistic was appropriate for comparing correlations

between rjk and rhm and was therefore applied to multiple correlations of the college achievement

indices (variables j and h) with their predicted scores from the preadmission variables (variables

k and m).  Given the large number of tests performed, multistage Bonferroni correction

recommended by Larzelere and Mulaik (1977) were used to maintain the nominal type I error

rate of .05.  In addition, IOC rates, defined as the proportion of times in which two students

taking the same course received non-tied grades in the same order as their achievement indices

(i.e., higher course grade with higher achievement index and vice versa), were tabulated for the

different college achievement indices. 

Results

Results reported in this session are pertaining to the ’96 cohort. Summary statistics for

same-sample and cross-validated college achievement measures are reported in Table 1. Raw

GPA and GPAs adjusted by different methods were placed on different scales, so the standard

deviations and ranges were not comparable. It is probably worth noting that the Multilog and

Bigsteps programs centered the person parameters at different locations and put them on

different scales for the supposedly equivalent partial credit models.
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TABLE 1

Summary Statistics for Same-Sample and Cross-validated College Achievement Measures
of the ’96 Cohort (Study 1)

Same-sample Cross-validatedCollege
achievement
measures Mean SD Min Max Mean SD Min Max

GPA 2.51 0.97 0.00 4.00 - - - -
Additive 2.52 0.99 -0.59 5.37 2.66 0.98 -0.43 5.06
Multiplicative 2.56 1.02 0.00 6.57 2.65 1.05 0.00 5.84
Combined 2.44 1.18 -4.88 5.18 2.68 0.94 -4.70 4.67
RSBS 0.30 1.98 -5.18 6.04 0.73 2.17 -5.75 6.80
PCBS 0.30 2.11 -5.92 6.70 0.80 2.48 -6.81 7.81
PCM1 -0.02 0.81 -2.50 2.39 0.04 0.87 -2.92 2.57
PCMA -0.02 0.81 -2.42 2.33 0.05 0.88 -3.10 2.49
GPCM -0.02 0.81 -2.49 2.17 0.05 0.89 -2.85 2.34
GRM 0.00 0.83 -2.62 2.20 0.03 1.07 -5.12 2.31

Note.    Same-sample achievement measures are based on course parameters estimated from the ‘96 cohort. Cross-
validated achievement measures are based on course parameters estimated from ‘95 cohort. IRT model
abbreviations: RSBS=rating scale performed by Bigsteps, PCBS=partial credit performed by Bigsteps,
PCM1=partial credit with common slope of 1 performed by Multilog, PCMA= partial credit with common slope
estimated from the data performed by Multilog, GPCM=generalized partial credit performed by Multilog, and
GRM=grade response performed by Multilog. N=1,710.

Multiple correlations of college achievement measures with preadmission variables (ACT

composite score and high school GPA) and IOC rates of the achievement measures with college

course grades are presented in Table 2. As expected, multiple correlations and IOC rates of

same-sample adjusted college GPAs (course parameters estimated from the ’96 cohort) were

higher than their cross-validated counterparts (course parameters estimated from the ’95 cohort).

Pairwise comparisons of the multiple correlations were performed within the same-sample and

cross-validated set of college achievement measures (see first two columns of Table 2). 
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TABLE 2

Multiple Correlations with Preadmission Variables and Internal Order Consistency Rates
with Course Grades for College Achievement Measures of the ’96 Cohort (Study 1)

Multiple correlation with
ACT composite and H.S. GPA Internal order consistency rateCollege

achievement
measures Same-sample Cross-

validated Same-sample Cross-
validated

  GPA .417a .417a .831 -
  Additive .543c .445bc .868 .850
  Multiplicative .516b .443abc .873 .850
  Combined .533bc .443abc .855 .850
  RSBS .568d .462c .869 .847
  PCBS .566d .451bc .872 .847
  PCM1 .532bc .435ab .869 .849
  PCMA .537bc .440ab .870 .851
  GPCM .532bc .451bc .860 .846
  GRM .542bc .409ab .860 .836
Note. Correlations in the same column that do not share subscripts differ at p<.05 (with multi-stage Bonferroni
correction) in the Steiger (1980) test of significant correlation difference. Same-sample achievement measures are
based on course parameters estimated from the ’96 cohort. Cross-validated achievement measures are based on
course parameters estimated from ‘95 cohort. GPAs are not crossed-validated; they are listed under Cross-validated
only for comparison with crossed-validated achievement measures. IRT model abbreviations: RSBS=rating scale
performed by Bigsteps, PCBS=partial credit performed by Bigsteps, PCM1=partial credit with common slope of 1
performed by Multilog, PCMA= partial credit with common slope estimated from the data performed by Multilog,
GPCM=generalized partial credit performed by Multilog, and GRM=grade response performed by Multilog.
N=1,710.

With same-sample bias, in terms of multiple correlations with preadmission variables, all

adjusted GPAs (ranging from .516 to .568) performed significantly better than the unadjusted

GPA (.417). Moreover, the additive model appeared to be the best among the linear models (.543

vs. .516 and .533), although the difference between the additive and combined models was not

statistically significant. The two Bigsteps models excelled among the IRT models (.568 and .566

vs. .532 to .542 for other IRT models). The Multilog models did not differ significantly from

each other or from the linear models. When same-sample bias was taken into account, however,

only the additive (.445), RSBS (.462), PCBS (.451), and GPCM (.451) models improved

significantly over raw GPA (.417) on multiple correlation with ACT composite score and high
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school GPA. Regardless of whether same-sample bias existed, the two Bigsteps models appeared

to perform the best among all the college achievement measures included in this study. 

In terms of IOC rates with course grades, adjusted GPAs (ranging from .855 to .873 for

same-sample and from .836 to .851 at cross-validation) still performed better than the unadjusted

GPA (.831) despite the correction of same-sample bias (see last two columns of Table 2). The

multiplicative model had the highest IOC rate (.873) with same-sample bias, but the PCMA

model had the best IOC rate (.851) at cross-validation. Since the differences in IOC rates were so

minor, perhaps we should not put too much weight on this criterion in informing the relative

performance of the adjustment models. 

Discussion

In spite of the problematic characteristics of the college grade data used in this study, the

advantage of the alternative measures to GPA seemed fairly clear. Any adjustment of college

GPA was better than no adjustment. This observation was true on both criterion measures and

remained true at cross-validation. Since differences on IOC rates could not be tested for

statistical significance, the relative performance of the models observed on this criterion might

have been due to chance, and should not be relied on too heavily for model selection. Because

the relative performance of the models on multiple correlations was tested for statistical

significance, it seemed to be reasonable to conclude that the Bigsteps IRT models, especially the

rating scale model, outperformed the other models. The improvement of RSBS adjusted GPA

over the unadjusted GPA on predictive validity was quite substantial. The squared multiple

correlation with ACT composite score and high school GPA increased by .149, from (.417)2 to

(.568)2, with same-sample effects. Although the cross-validated results may have been
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underestimated due to uncharacteristic changes between the two cohorts analyzed in this study,

the improvement remained sizable at cross-validation, R2 raised by .04 from (.417)2  to (.462)2.

Moreover, this study showed the importance of cross-validation envisioned by Linn

(1966). The relative performance of the different models did change depending on whether

same-sample bias was taken into account. For instance, with same-sample bias the better

performing GRM-adjusted GPA in relation to simple GPA (.542 vs. .417) on multiple correlation

became worse than simple GPA (.409 vs. .417) at cross-validation, though the difference was not

statistically significant. Moreover, the relative standings of the adjustment methods, especially

the top performing ones, changed on IOC rate, depending on whether same-sample bias was

considered. One may wonder if these inconsistencies were due to chance or to the peculiarities of

the data used for cross-validation in this study. In search of a solution to this uncertainty, Study 2

will employ another data set more typical of college course grades.

It is interesting to note that the supposedly equivalent partial credit model fitted by the

Bigsteps and Multilog programs performed differently on multiple correlation with the

preadmission variables. The advantage of the Bigsteps partial credit model over the Multilog

counterpart on multiple correlations may be due to fewer distributional constraints on the theta

scale (without vs. with normal prior), different estimation procedures (joint maximum likelihood

vs. marginal maximum likelihood), or the linearization of the achievement scale made by the

Bigsteps program. Regardless of the existence of same-sample bias, the IRT models fitted by the

Multilog program (PCM1, PCMA, GPCM, and GRM) did not perform differently from each

other. Similarly, the models fitted by the Bigsteps program (RSBS and PCBS) did not perform

differently from each other. Therefore, the differences in performance among the IRT models
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appeared to be attributable to the different estimation characteristics employed by the programs

rather than to model complexity in terms of the number of free parameters. 

When Multilog is used to fit IRT models, it should be cautioned that “Multilog does not

check for zero-category frequencies, the erroneous results that are obtained if a category has no

respondents are unpredictable” (Thissen, 2000). When this message is translated in terms of

grade data, Multilog should not be used if there are missing course grades in any class unless

intercepts surrounding the missing grades are not estimated. This can be accomplished by

collapsing grades or by fixing the intercept values around the missing categories. Because there

were some missing grades in the ’95 data, cross-validated results based on Multilog models may

have been distorted and should be interpreted with caution. Bigsteps, on the other hand, allows

the option of keeping or collapsing the missing grade. It is not clear, however, how missing

grades would affect the stability of their step estimates and how they would affect the cross-

validation results in this study. Therefore, Study 2 will consider fixing the step parameters (for

the Bigsteps program) or the intercepts (for the Multilog program) surrounding the missing

grades.

Due to the peculiarities of the data, findings of this study should be viewed as tentative,

especially on the parts pertaining to cross-validation. Results of this study should be replicated

with college grade data consisting of characteristics that are representative of the college. If

alternative measures to GPA were to become operational, course parameters and regression

weights would likely be estimated for individual colleges from a representative cohort. Then,

these course parameter estimates may be used for GPA adjustment and the regression weights for

prediction of achievement of later cohorts. Study 2 attempts to evaluate the merits of adjusting

GPA under these realistic practical conditions with data on typical courses offered by colleges. 
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Study 2

Method

Students 

Students were drawn from two consecutive cohorts at a large midwestern university. For

each cohort, an initial pool of students was created by matching ACT high school profile records

with course grade records from this university.  ACT high school profile records are organized

by year of graduation from high school.  The cohorts graduated from high school in 1995 and

1996.  The initial pool for each cohort included students who earned a letter grade (F to A+) in at

least one course in each of the fall and spring semesters of the second academic year following

their high school graduation.  It was necessary to use second-year grades because first-year grade

data were inadvertently missing from the course grade file.  [The use of second-year grade data

could conceivably underestimate the predictive validity of preadmissions tests such as the ACT

Assessment, which is intended to predict first-year college achievement, but second-year data

was expected to be adequate for the main purpose of this study, which was to compare models

under both same-sample and cross-validity conditions. See discussion section for further

information on this point.]   There was attrition from these pools because students had to have at

least one letter grade in the courses included in this study, and not all courses were included (see

below).  The final numbers of students in the ‘95 and ‘96 cohorts (so named by year of high

school graduation) were 1,823 and 1,879 respectively.  The number of grades per student ranged

from1 to 12, with 95% of students represented by 3 to 9 grades.

 College courses

As indicated above, the courses in this study were taken during each cohort's second year

at the University of Iowa.  Two types of courses were defined:  individual courses and catch-alls. 
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Individual courses include any course in which thirty or more students from each cohort earned a

letter grade.  Since individual courses are one semester in duration, but are sometimes offered

both fall and spring semesters, grades were pooled from both semesters, if applicable. Individual

courses are designated by a department code and a course code. 

Catch-alls represent one or more smaller courses within the same department.  A similar

procedure of pooling grades from small courses within departments was used by Stricker, et al.,

(1994) and Elliot and Strenta (1988). Courses subsumed within catch-alls had fewer than thirty

letter grades for one or both of the cohorts.  A catch-all might not represent the same mixture of

individual courses in both cohorts.  In order to make the catch-alls for a department more alike

across cohorts, they were defined separately by semester.  Like individual courses, a catch-all

was required to have thirty or more letter grades within each cohort.  With these procedures, a

department could be represented by a catch-all for each semester, for just one semester, or by no

catch-all.  Catch-alls are designated by a department code and a semester code.  

In total, there were 146 courses of both types: 94 individual courses and 52 catch-alls.

These courses represented 85% and 83% of the letter grades received by the 1995 and 1996

cohorts respectively.  The individual courses represented 41 departments.  The catch-all courses

represented 32.  The total number of departments represented was 53.  

College grade coding and GPA

The letter-component of each grade was numerically coded from 0 (F) to 4 (A).  This

coding was used to compute the GPA as well as to compute all adjusted-GPA measures.  The

pluses and minuses that are attached to letter grades at the University of Iowa were not used.

The numerical grades were not weighted by number of credit hours.  These procedures are
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similar to those used in other GPA-adjustment studies (e.g., Young, 1990a; Stricker, et al., 1994;

Caulkins, et al., 1996; Johnson, 1997).

Procedure 

The basic model fitting and cross-validation procedures used in this study were similar to

Study 1. Several modifications were made based on the findings and discussions of Study 1.

First, because the partial credit model fitted with Bigsteps performed similarly on IOC rate and

better on multiple correlation with preadmission variables in comparison to the Multilog

counterparts, the partial credit model was not re-fitted with the Multilog program. 

Second, to control for possible idiosyncratic effects of different ways of handling missing

grades in different polytomous IRT programs, missing grades within courses were handled

differently from Study 1. Instead of using the default methods of handling missing categories,

step parameters surrounding the missing grade within any course for the PC model were fixed to

the corresponding common step parameters estimated for the RS model. Similarly, intercepts

surrounding the missing grade within any course for the GR or GPC models were fixed to the

corresponding common intercept values obtained from a previous analysis on the same data by

constraining the intercepts to be the same across courses.

Third, in addition to cross-validating course parameter estimates, equations for predicting

college achievement measures from the preadmission variables were also cross-validated.

Regression equations were derived from the ’95 cohort for the college achievement measures.

Predicted achievement scores of the ’96 cohort were obtained by substituting their ACT

composite scores and reported high school GPAs into the regression equations derived from the

’95 cohort. Scatter plots of the same-sample and cross-validated college achievement measures

of the ’96 cohort against the corresponding predicted achievement scores were obtained.
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Correlations of these bivariate plots were computed and tested for statistical significant

difference among the achievement measures using the Z2
* statistic proposed by Steiger (1980). 

Finally, three IOC rates were computed for each achievement measure.  To represent

these rates formulaically, let “Tot” represent the total number of cases in which two students

received non-tied grades in the same course.  This number includes all possible pairs of students

and does not depend on any achievement measure.  For each achievement measure, two more

numbers were obtained: “Ties” is the number pairs (of students who received different grades in

the same course) that were tied on the given achievement measure, and “Hits” is number of pairs

that were not tied on the given achievement measure, and for which the achievement measure

correctly predicted which student received the higher grade.  The three IOC rates computed for

each achievement measure were 1) Hits/Tot, 2) Hits/(Tot – Ties), and 3) (Hits + 0.5*Ties)/Tot.

In rate 1, ties are treated as prediction errors (ties = errors).  This was the rate computed in Study

1.  In rate 2, ties are treated as missing (ties = missing).  In rate 3, ties are treated as contributing

to a 0.5 IOC rate (ties = half hits).  The effect of these different ways of handling ties in

achievement measures was examined.   

Results

Regression weights and their estimated standard errors derived from the ’95 cohort for

predicting college achievement measures from preadmission variables are listed in Table 3.

Students’ ACT composite scores and high school GPAs (conditioned on each other) were

significant predictors (p < .0001) for all of the college achievement measures included in the

study. Squared multiple correlations were higher for the adjusted GPA equations (ranging from

.231 to .259) than for the raw GPA equation (.162), but the differences in R2 were less than .1. 
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TABLE 3

Beta Weights Estimated from the ‘95 Cohort for Prediction of the ’96 Cohort (Study 2)

College
achievement
measure

Intercept ACT
Composite

High school
GPA R2

GPA .750 (.121) .019 (.004) .499 (.034) .162
Additive .093 (.120) .031 (.004) .604 (.034) .245
Multiplicative .248 (.119) .028 (.004) .581 (.034) .231
Combined -.302 (.137) .035 (.004) .679 (.039) .241
RS -6.972 (.377) .108 (.011) 1.920 (.107) .259
PC -7.032 (.376) .108 (.011) 1.905 (.107) .257
GR -3.790 (.163) .043 (.005) .809 (.046) .243
GPC -3.833 (.165) .045 (.005) .842 (.047) .254
Note.  Values in parentheses are standard errors of the beta estimates. IRT model abbreviations: RS=rating scale,
PC=partial credit, GR=graded response, GPC= generalized partial credit. N=1,789.

Summary statistics for predicted, same-sample, and cross-validated achievement measures

of the ’96 cohort are given in Table 4. Predicted achievement measures were computed by

substituting ’96 students’ ACT composite scores and high school GPAs into the prediction

equations derived from the ’95 cohort (see Table 3). Same-sample achievement measures were

based on course parameters estimated from the same ’96 cohort, while the cross-validated

counterparts were based on course parameters estimated from the ’95 cohort. Because there were

missing data on the preadmission variables, only 1,822 of the 1,879 students had predicted

achievement measures. Means and standard deviations of the same-sample and cross-validated

achievement measures were very close to each other. Means of the predicted achievement

measures were higher than means of the same-sample or cross-validated achievement measures.

As a group, the ’96 cohort achieved somewhat less than expected. Standard deviations of the

predicted measures, however, were much smaller than the same-sample or cross-validated
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counterparts. This makes sense because the prediction equations were derived using least-squares

solutions.

TABLE 4

Summary Statistics for College Achievement Measures of the ’96 Cohort (Study 2)

Predicted
(N=1,822)

Same-sample
(N=1,879)

Cross-validated
(N=1,879)College

achievement
measures Mean SD Mean SD Mean SD

GPA 2.98 0.24 2.95 0.62 - -
Additive 2.98 0.31 2.94 0.65 2.95 0.65
Multiplicative 2.99 0.30 2.95 0.64 2.96 0.64
Combined 2.95 0.35 2.92 0.71 2.94 0.71
RS 2.44 1.02 2.35 2.03 2.37 2.05
PC 2.32 1.01 2.21 2.04 2.25 2.04
GR 0.12 0.42 0.08 0.85 0.09 0.89
GPC 0.23 0.44 0.03 0.88 0.21 0.88
Note.  Predicted achievement measures are computed by substituting ’96 students’ ACT composite scores and their
high school GPAs into the prediction equations derived from the ’95 cohort. Same-sample achievement measures
are based on course parameters estimated from the ‘96 cohort. Cross-validated achievement measures are based on
course parameters estimated from the ‘95 cohort. IRT model abbreviations: RS=rating scale, PC=partial credit,
GR=graded response, GPC= generalized partial credit.

The correctness of predicted college achievement measures from the preadmission

variables is evaluated through scatter plots of the observed achievement measures against their

predicted counterparts and correlations of those bivariate plots. These plots are shown in

Appendix A.  The scatter plot of the baseline unadjusted GPA against predicted GPA is given in

Figure 1 (the upper left graph). Plots for sample-sample adjusted achievement measures are

presented in Figures 1 (except the upper left graph) and 2, and plots for cross-validated adjusted

achievement measures are presented in Figures 3 and 4. Correlations of the plots are given in the

first two columns of Table 5. Although the correlations were moderate (around .50s), the
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majority of the points were within the 95% confidence intervals of the regression lines. It

appeared that there were more points below the lower interval than points above the upper

interval for the unadjusted and linearly adjusted GPAs, while the points distributed quite evenly

outside the upper and lower intervals for the IRT adjusted GPAs.  This difference may be

because the raw GPA and the linearly adjusted GPAs were bounded and had some ceiling effect

while the IRT adjusted GPAs were, theoretically, unbounded.  

  The last two columns of Table 5 provide multiple correlations of the achievement

measures with the ACT composite score and high school GPA using regression weights derived

from the same ’96 cohort. Multiple correlations of the achievement measures with the

preadmission variables using equations estimated from ‘95 were similar to the corresponding

multiple correlations using equations estimated from ’96. Moreover, regardless of the year of

equations used, the same-sample multiple correlations were, as expected, larger than their cross-

validated counterparts, but only by a very narrow margin. The beta weights and course parameter

estimates appeared to be stable over the two cohorts. 

TABLE 5

Multiple Correlations of College Achievement Measures with Preadmission Variables for
the ’96 Cohort (Study 2)

’95 equations ’96 equationsCollege
achievement
measures Sample-sample Cross-

validated Sample-sample Cross-
validated

GPA .411a .411a .413a .413a

Additive .497c .492c .498c .493c

Multiplicative .484b .478b .486b .480b

Combined .504cd .497cd .505cd .499cd

RS .517d .511d .518d .513d
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PC .516d .508d .517d .509d

GR .505cd .487bc .506cd .490bc

GPC .508cd .499cd .509cd .501cd
Note. Correlations in the same column that do not share subscripts differ at p<.05 (with multi-stage Bonferroni
correction) in the Steiger (1980) test of significant correlation difference. Same-sample achievement measures are
based on course parameters estimated from the ‘96 cohort. Cross-validated achievement measures are based on
course parameters estimated from the ‘95 cohort. GPAs are not crossed-validated; they are listed under cross-
validated only for comparison with cross-validated achievement measures. IRT model abbreviations: RS=rating
scale, PC=partial credit, GR=graded response, GPC= generalized partial credit. N=1,822.

The multiple correlations of all types of adjusted-GPA (by any model) with

preadmissions variables were significantly improved over those for raw GPA (see Table 5).  R2

increments (within column differences between squared values of Table 5 and squared values of

the baseline GPA in the first row) ranged from .065 to .097 for same-sample and from .059 to

.092 for cross-validated achievement measures, and the ranges were nearly the same regardless

of the year of prediction equations used. The RS method consistently outperformed the other

adjustment methods on multiple correlations with the preadmission variables, although the

performance of the combined method in the linear category and the PC and GPC methods in the

IRT category was not significantly different from the RS method.

TABLE 6

Internal Order Consistency Rates of College Achievement Measures with Course Grades
for the ’96 Cohort (Study 2)

Ties = errors Ties = missing Ties = half hitsCollege
achievement
measures

Sample-
sample

Cross-
validate

d

Sample-
sample

Cross-
validate

d

Sample-
sample

Cross-
validate

d
GPA .837 - .852 - .846 -
Additive .858 .856 .858 .856 .858 .856
Multiplicative .858 .856 .858 .856 .858 .856
Combined .853 .852 .853 .852 .853 .852
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RS .858 .856 .859 .857 .859 .857
PC .859 .856 .860 .857 .860 .856
GR .855 .848 .855 .849 .855 .849
GPC .854 .848 .854 .848 .854 .848
Note.  Same-sample achievement measures are based on course parameters estimated from the ‘96 cohort. Cross-
validated achievement measures are based on course parameters estimated from the ‘95 cohort. IRT model
abbreviations: RS=rating scale, PC=partial credit, GR=graded response, GPC= generalized partial credit. N=1,879.

The relative performance of the adjustment methods on different definitions of IOC rates

is shown in Table 6. How ties in achievement measures were treated mattered little to the

adjusted GPAs, but it seemed to affect raw GPA quite substantially because raw GPA had more

ties than the adjusted GPAs. Raw GPA was disadvantaged if ties were treated as errors but

benefited the most if ties were treated as missing; perhaps it is fairer to treat ties as half hits and

half errors. Regardless of how ties in achievement measures were treated, raw GPA (ranging

from .837 with ties=errors to .852 with ties=missing) was inferior to most adjusted GPAs in

terms of IOC rates except for the cross-validated GR (.849) and GPC (.848) measures when ties

were treated as missing. However, the differences in IOC rates appeared to be small (not very

discriminating) and the differences were not conducive to tests of statistical significance.

Moreover, it is debatable conceptually how ties should be treated. Therefore, the IOC rate

criteria do not seem to be very informative on the relative performance of the adjustment

methods. 

General Discussion

The primary purposes of this research report are to expand the IRT-based category used in

grade adjustment, and correct for same-sample bias to provide a more realistic picture of actual
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implementation. These objectives are achieved with course grade data and ACT test reports from

consecutive cohorts of two universities, results of which are reported in two studies. 

Several consistent findings are observed over the two studies. First, any adjustment of

GPA is better than no adjustment in terms of multiple correlations with the preadmission

variables and, for the most part, on IOC rates as well. This observation is true for both the same-

sample and cross-validated sets of alternative achievement measures. Second, among the

adjustment models included in this report, the rating scale and partial credit models fitted by the

Bigsteps program excelled in terms of multiple correlations with the preadmission variables.

Third, the graded response model, on the other hand, is the most unstable among the adjustment

methods across cohorts on multiple correlations with the preadmission variables (it has the

largest drop in R2 at cross-validation, by .126 in Study 1 and by .016 in Study 2). Fourth, the IOC

rate is not very informative about the relative performance of the adjustment methods because

the observed differences among the models are very small and they are not conducive to

statistical tests.

The magnitude of same-sample improvement in R2 of adjusted over unadjusted GPA

(ranging from .092 to .149 in Study 1, and from .065 to .097 in Study 2) is, in general, similar to

other grade adjustment studies reported in the literature. In particular, R2 increments for the

graded response model were .120 in Study 1 and .085 in Study 2, while those reported by Young

(1990b) and Stricker, et al. (1994) were respectively .073 and .064. R2 increments for the additive

model were .121 in Study 1 and .077 in Study 2 while those reported by Caulkins, et al. (1996)

and Johnson (1997) were respectively .111 and .086. The similarity of R2 increments is

particularly noteworthy given across-study differences in the selectivity of institutions

represented, predictor variables, and in time frame represented by the college achievement
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measures.  Caulkins et al., (1996), Johnson (1997), and Stricker (1994) all used the SAT rather

than the ACT Assessment to predict college achievement measures.  Stricker (1994) used high

school rank rather than high school GPA.  Caulkins, et al., (1996) and Johnson (1997) used data

from highly selective institutions, whereas Stricker, et al. (1994) used data from a less selective,

public university.  Johnson (1997) used four-year cummulative grades, Caulkins et al., (1996)

used three-year cumulative grades, and Stricker et al., (1994) used first-year grades exclusively. 

Cross-validated results (of course parameters and regression weights) are more reflective

of operational use of the adjustment methods and should be examined in all grade adjustment

studies (Linn, 1966). As shown by the two studies in this report, cross-validated results can vary

quite substantially from institution to institution. R2 differences between same-sample and cross-

validated indices ranged from .070 to .126 in Study 1 and from .005 to .016 in Study 2. As

mentioned before, the cross-validated results of Study 1 may have been distorted. It is not clear,

however, if the small changes at cross-validation in Study 2 are characteristic of other

institutions.  This matter should be examined in future studies. 

Moreover, stability of the adjustment methods over consecutive cohorts may be an

important consideration for model selection. Then, guided by the results of Study 2, the linear

models, especially the additive model, and the rating scale model have the smallest drop in

multiple correlation with the preadmission variables at cross-validation. This makes sense

because the linear models and the rating scale model have fewer free parameters to be estimated

than the other adjustment models. Perhaps with the exception of the graded response model (its

R2 change was .016 and the largest), the differences among the adjustment methods in R2

decrease at cross-validation were quite small (R2 change ranged from .005 to .008) and could
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have been due to chance errors.  Therefore, the relative stability of the adjustment methods

observed in this study should be replicated in future studies.

In the IRT-based family, only Samejima’s (1969) graded response model has been applied

to grade adjustment. This report expanded the list to include other appropriate polytomous IRT

models as well as to investigate their implementation with different programs. Results showed

that the graded response model is not the best IRT-based model for grade adjustment,

particularly in terms of stability over cohorts. In addition, the differential performance of the IRT

models may not be due to model complexity per se, but to the program and the estimation

procedures employed therein that carried out the modeling.

All of the models included in this report assume unidimensionality of course grades

assigned to students, implicitly or explicitly. Young (1990a) factor-analyzed course grades

before applying the IRT graded response model to separate sets of relatively homogeneous

courses. In this report, the IRT models were applied to the whole set of courses available without

testing the dimensionality of the courses. It is unlikely that the courses would be unidimensional.

It is not clear how the violation of the unidimensionality assumption has affected the results of

the IRT models reported here. However, the effect of violating the dimensionality assumption is

not necessarily unique to the IRT models, because the raw GPA and the linearly adjusted GPAs

also implicitly treat course grades as unidimensional. If one is interested in multidimensional

measures of achievement, perhaps profiles of achievement scores on unidimensional sets of

courses should be examined rather than a single achievement measure.    

We can think of no reason why the relative performance of the models in this study,

under both same-sample and cross-validity conditions, should depend on the fact that

achievement was measured by second-year grades exclusively.  GPA-adjustment studies have
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used four-year cummulative grade data (Young, 1990a; Johnson, 1997), three-year cummulative

grade data (Caulkins, et al., 1996), first-year grades (Stricker, et al., 1994), and other single-year

grade data  including second-year grades exclusively (Caulkins, et al., 1996).  It is conceivable

that the correlation of any measure based on second-year grades exclusively could underestimate

the predictive validity of preadmissions tests like the ACT Assessment, which are intended to

predict first year achievement.  However, the relative performance of GPA-adjustment methods

has not been attributed to the particular time frame of achievement represented in studies, (e.g.,

Johnson, 1997; Caulkins, 1996; and Stricker, et al., 1994).

In terms of model selection, based on the results of the two studies, it seems to be

reasonable to recommend the rating scale model or the partial credit model performed by the

Bigsteps program, especially if high multiple correlation of the achievement measure with the

preadmission variables is desired. On the other hand, model simplicity and ease of

implementation may be important considerations for operational use of alternative measures,

then the linear models, particular the additive model, would perform sufficiently well. It is a

matter of judgment, however, if the magnitude of improvement in the predictive validity

coefficients and IOC rates with course grades observed in the two studies of this report warrant

the controversial operation of adjusting the ordinary GPA. This administrative choice is left for

the readers to ponder upon.  
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Appendix A

Formulas and Number of Course Parameters for Models Selected for Grade Adjustment

Abbreviation Description Formulas No. of Course
Parameters a

GPA Grade point
average xij = �i + �ij 0
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Note.
a Assume that there are k distinct grades within each course, and that there are m courses.
b For polytomous IRT models, nik�

  represents the probability of person n getting grade k for course i; mi represents
  the highest grade assigned for course i, where the lowest course grade is 0. 
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Figures
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FIGURE 1. Scattered plot of achievement measures on predicted achievement measures from
preadmission variables for: upper left – Unadjusted GPA, upper right – Additive adjusted GPA,
lower left – Multiplicative adjusted GPA, lower right – Combined adjusted GPA.
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FIGURE 2. Scattered plot of achievement measures on predicted achievement measures from
preadmission variables for: upper left – Rating Scale adjusted GPA, upper right – Partial Credit
adjusted GPA, lower left – Graded Response adjusted GPA, lower right – Generalized Partial
Credit adjusted GPA.
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FIGURE 3. Scattered plot of cross-validated achievement measures on predicted achievement
measures from preadmission variables for: upper left – Additive adjusted GPA, upper right –
Multiplicative adjusted GPA, lower left – Combined adjusted GPA, lower right – Rating Scale
adjusted GPA.
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FIGURE 4. Scattered plot of crossed-validated achievement measures on predicted achievement
measures from preadmission variables for: upper left – Partial Credit adjusted GPA, upper right –
Graded Response adjusted GPA, lower left – Generalized Partial Credit adjusted GPA.


	Method
	Source of Data
	TABLE 2
	Multiple correlation with
	GPA
	
	
	
	
	
	
	Students
	College grade coding and GPA
	Procedure

	Results


	Beta Weights Estimated from the ‘95 Cohort for Pr
	Internal Order Consistency Rates of College Achie






	General Discussion
	References



