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Abstract

Automated test assembly is a technology for producing multiple, equivalent test forms

from an item pool.  An important consideration for test security in automated test assembly is the

inclusion of the same items on these multiple forms.  Although it is possible to use item selection

as a formal constraint in assembling forms, the number of constraints is often so large to begin

with that imposing additional constraints may produce unsatisfactory results. In this paper we

propose an alternative method for controlling item allocation that is based on randomization.  An

example from an actual item pool is presented to illustrate the method.





Controlling Item Allocation in the Automated Assembly of 
Multiple Test Forms

The automated assembly of multiple test forms for online delivery offers an alternative to

a single, computer-administered, fixed test form or even a computerized-adaptive test.  The

constructed forms are usually assembled according to a set of content and psychometric

specifications obtained from a reference test (i.e., a test form that has been administered

previously and has exhibited acceptable results in terms of form difficulty, variability, reliability,

passing rate or other psychometric considerations).  If the constructed tests all meet these

reference specifications, by making some assumptions concerning the operating characteristics

of the items, the test forms can be thought of as equivalent in some sense.  For example, if the

psychometric specifications refer to the first and second moments of target difficulty and

variability for each individual examinee, the constructed test forms would be parallel if all of the

psychometric specifications were met across all of the test forms.  The result is that a single

passing standard or score could be used across forms, eliminating the need for post-

administration equating or the establishment of separate passing scores for each form.

The multiple forms may or may not consist of unique test items.  Frequently, item pools

from which the forms are constructed are small relative to the length and the number of forms

required.  Consequently, individual items may appear on more than one form.  For example, if

we were assembling five forms of the same test from a pool of items, each item within the pool

would appear on either 0, 1, 2, 3, 4, or 5 forms.  The number of items, nm, that appear on 

m = 0, 1, 2, 3, 4, 5 forms represents the allocation of items across the five test forms. We refer to

the appearance of items across multiply constructed test forms as item allocation. 

If enough items appear frequently on many forms, the security of the items and the

validity of the test results could be in question.  One of the goals of the test assembly or 
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construction process should be to minimize test-overlap rate, defined as the proportion of items

shared between any two forms.  One way to do this is to include item usage as a constraint or

target in the solution of the assembly problem.  However, this may be unnecessary, especially if

the form-assembly problem is burdened with numerous other constraints such as multiple levels

of content categories and key balancing requirements, in addition to the psychometric

requirements of the test forms.  And any constraint that forces items onto a test form may end up

doing so at the expense of other constraint goals.  It may be more efficient to implement a

simpler process to control the allocation of items across multiple forms.  The purpose of this

paper is to illustrate, by example, a simple randomization process that controls item allocation by

minimizing the average test-overlap rate between pairs of test forms while producing tests that

meet content and psychometric assembly constraints.

Ideal Item Allocation across Multiple Test Forms

What is the most ideal distribution or allocation of test items across multiple, equivalent

test forms constructed from the same item pool?  Obviously, the most desirable distribution or

allocation from a test security standpoint is one in which there are no shared items across the

forms.  However, the item pool would have to be quite large relative to the length of each test

form and the number of forms required to achieve this ideal.  In addition, the pool would have to

consist of enough “good” items so that all of the psychometric constraints could be met.  And

obviously if there were content constraints as well, there would have to be a sufficient number of

items within each content category to satisfy the assembly goals.

If such an ideal allocation cannot occur, one might ask what is “next-best”?  From a test

security perspective, we want to minimize the number of times that an item appears on every

constructed form or nearly every constructed form.  And from a test development perspective, we



3

do not want the situation where a large proportion of available items in the pool never appears on

a single form.  The latter situation would appear to be a waste of development time and money.

To accomplish this goal, we present a method of controlling item appearances on multiple test

forms that is derived from random sampling without replacement.  This method can be

implemented with any automated test-assembly procedure.  It is based on the idea that if one

could guarantee that the psychometric constraints would be met, the best way to safeguard

overexposure of items would be to select them from the pool or each content category at random

without replacement.  If this were possible, the resulting allocation of items across forms would

be defined as optimal, in the sense that it minimizes average test overlap of the constructed test

forms.  This claim is substantiated later in this paper.

Traditional Method of Controlling Item Exposure in CAT

Because the method of controlling item inclusion on assembled test forms is very similar

to the traditional tactic used to manage computerized adaptive testing (CAT) programs, it is

helpful to review that approach.  The typical method of controlling for item exposure in CAT

situations is to use a conditional approach first suggested by Sympson and Hetter (1985).  For this

procedure, a maximum expected item-exposure rate, r, is first established.  The goal is to find a

set of item-exposure-control parameters that govern the administration of items in a CAT item

pool in such a way that no single item is ever administered more than r100% of the time, where

0 ≤ r ≤ 1.

The approach is called conditional because it is formulated within the context of a

conditional probability statement.  If Pi(S) is the probability that item i is selected for a CAT

administration, and Pi(S,A) is the probability that item i is selected and administered (i.e.,

exposed), then an item’s exposure control parameter is simply Pi(A|S), the probability of
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administering an item, given that it has been selected, or Pi(A|S) = Pi(S,A) ÷ Pi(S).  The purpose

of this conditional probability is to allow the item to be administered only if the conditional

probability is satisfied, thus controlling for the exposure of that item. 

If Pi(S,A) is replaced by the target-exposure rate, r, CAT simulations and an iterative

procedure are used to obtain a value of Pi(A|S) for each item in the pool.  Simulated examinees,

similar in number and ability distribution to the intended CAT examinee population, are

administered items selected from the CAT item pool.  The values of Pi(S) are usually all set to 1.0

at the beginning of a set of simulations.  The items are then selected on their ability to satisfy

whatever constraints are required (e.g., maximum information at ability estimates, content

specifications).  However, they are only administered if a uniform random deviate is less than or

equal to r ÷ Pi(S).  If it is not, the items are temporarily set aside until all other items have been

administered to a particular examinee or the pool has been exhausted.  After all N simulated

examinees have taken the CAT, and the number of times each item has been selected, Si, has been

counted, Pi(S) is replaced by (Si ÷ N) and the process begins again.  Pi(S) continues to be refined

until such time that the proportion of times that an item has been selected and administered across

all examinees, or (Ai  ÷ N), is close to the target value r.  The number of iterations of Pi(S)

required before (Ai  ÷ N) approaches r is usually fairly small (Sympson & Hetter, 1985).  The

result is that Pi(A|S) stabilizes, subsequently to be used in real CAT administrations to control

item usage or exposure at a rate ≤ r across the examinee population.  Obtaining Pi(A|S) for each

item in the pool is thus the goal of the simulation and iteration process for CAT.

The number of times that an item has been administered or exposed, Ai, can be assumed

to be a binomial random variable with parameters Pi(S,A), abbreviated as simply  Pi, and N, or

Ai ~ Bin(Pi, N).  The variance of (Ai  ÷ N), is small for large N, and therefore (Ai  ÷ N) approaches
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Pi.  However, the binomial distribution of Ai changes throughout the simulation and iteration

process.  The use of Pi(A|S) to control when items are administered during the simulations causes

Pi to approach r iteratively for the most popular items (i.e., those that have desirable

psychometric, content, and other required characteristics), while remaining less than r (i.e.,

approaching a value less than r) for less desirable items.  

How fast and which items converge1 to r (or a value less than r) somewhat depends on

the value of r and its relation to the observed, average item-exposure rate, {Σ[Pi] ÷ n}.  Chen,

Ankenmann, and Spray (1999) showed that, regardless of the pool size, n and fixed CAT test

length, k, the average item-exposure rate of any fixed-length CAT is equal to (k ÷ n).  Because the

target rate, r, is considered to be a maximum allowable rate for any single item, it is obvious that r

must be chosen so that r ≥ (k ÷ n). Chen, et al. (1999) further showed that the average test-overlap

rate, T , is a function of Pi.  Specifically,
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1 We note that the term, convergence, as used in this paper, describes the iterative process whereby the rates with
which items in the pool are administered change after each iteration.  Because the sum of these rates must always
equal the length of the test, k, only variance of these rates can change; it decreases iteratively until it stabilizes.
Thus, the term does not connote a statistical convergence, say in distribution or probability.     
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Because the Chen, et al. (1999) paper was concerned with CAT where N is typically very large,

they used a large-sample approximation for average test-overlap rate or 
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The average item exposure, (k ÷ n), is also the probability of drawing k items from an item pool

of size n randomly without replacement (see Appendix).  In fact Chen, et al. (1999) showed that

when Pi = (k ÷ n), for all i, T reaches its minimum value of (k ÷ n) (i.e., when the variance of Pi

is zero, the minimum value of T occurs).  This suggests that perhaps the target rate, r, could be

set to (k ÷ n) to minimize test overlap.  However, because items are selected based on their

psychometric and other characteristics and are not actually drawn at random, r = (k ÷ n) is not a

realistic target (Chen, et al., 1999).  Still, a target value slightly higher than (k ÷ n) might be quite

realistic and would produce a lower test overlap if this target could be reached by a majority of

the items during the simulation-iteration process described earlier.
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Controlling Item Allocation across a Small Number of Test Forms

In the CAT situation, N represents the number of tests that are to be given, or in this case,

the examinee-population size.  However, when multiple test forms are constructed for

administration via computer at a later time, N represents the number of forms to be assembled.

In this situation, N may be fairly small.  This difference in definition and, hence, size, results in a

slightly different interpretation of the goal of the Sympson-Hetter procedure.  Because N is

small, (Ai ÷ N) will not converge to Pi.  However, the behavior of Ai can only be described by its

probability density function or pdf, Ai ~ Bin(Pi, N), or
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The allocation of n items across N forms is the sum of these pdfs or
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Likewise, each Pi will not converge closely to the target rate, r, when N is small.  With only

N + 1 possible values for the estimates of Pi to assume, it is even difficult to obtain a large degree

of stability of the estimates.  However, the variance of the estimates of Pi will stabilize, even

after a small number of iterations.

In theory, if we set r =  (k ÷ n) we should get the item allocation that one would achieve

with the random sampling of k items from a pool of n items without replacement.  This would

also lead to the minimum average test-overlap rate, T , as in the CAT situation.  However, once

again, achieving the minimum test-overlap rate while meeting test-assembly specifications may

not be possible, and a target that is slightly higher than (k ÷ n) will probably need to be used.
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Except for the size of N, the iterative process for CAT and for the assembly of multiple

test forms is the same.  A good stopping rule for the CAT iterations is to stop the process when

the maximum exposure rate observed in the CAT item pool is “nearly” r, where “nearly” must be

defined.  For the multiple forms assembly, T can be used to stop the process.  We select the item

allocation that results when T is a minimum and all assembly constraints have been satisfied.

Therefore, a number of iterations are specified arbitrarily and the chosen item allocation across

forms is the one that produces the minimum value of T from these iterations while meeting all

assembly requirements or constraints.  Usually only a few iterations are necessary, as in the CAT

situation. 

Example

We have illustrated this procedure using a sample pool containing 247 items.  Tests were

constructed to be 75 items in length, and eight test forms were assembled to have the same

average difficulty level (in terms of number-correct score) and variability (in terms of the

standard deviation of observed test scores) as a reference form.  We used the heuristic procedure

developed by Swanson and Stocking (1993) using their weighted deviations model or WDM.

When assembled without item-exposure control2, the observed test-overlap rate for the

construction of eight forms was .41.  This meant that, on average, 41% of the items on each form

were also on another form.  The allocation of items without exposure control is given in Table 1

in the second column.

If 75 items were drawn completely at random without replacement from the pool with

probability (75 ÷ 247) to create eight forms without regard to psychometric requirements, the

                                                
2 In order to assemble multiple forms without item-exposure control, the first item included on a form is selected
randomly.  Thereafter, items are selected for inclusion based on the WDM criteria.  Without random selection for
the first item, all eight forms would be identical.
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item allocation across the eight forms can be obtained from equation (8) using Pi = (k ÷ n) =& .30.

Note that this is also the value of T .  These results appear in the fourth column of Table 1.

Although unattainable in practice, we used this ideal allocation as a baseline against which to

compare the item allocation that we achieved following the Sympson-Hetter iterations.

In this example, we increased the value of r on successive computer runs until a value of

r = .36 produced eight forms that met all psychometric constraints and yielded a minimum value

for T .  These results are given in the third column of Table 1.  Thus, our results fell somewhere

between the item allocation observed with no exposure control (the second column) and the

random or ideal allocation (the fourth column).  The use of the Sympson-Hetter procedure to find

the item allocation with the smallest average test-overlap rate, T , with all psychometric

constraints or requirements satisfied reduced the value of T  from .41 to .31.  The number of

items that appeared on all eight forms was reduced from 13 to 0, while the number of items that

never appeared on a single form was reduced from 25 to 14. 

TABLE 1

Item Allocations from the Sample Item Pool

# of Test Forms

(m)

Without Item-Exposure
Control

(# of Items)

With Item-
Exposure Control

r = .36
(# of Items)

Random
Distribution
r = (k ÷ n)

(# of Items)
0 25 14 14
1 55 50 48
2 74 75 73
3 47 56 63
4 19 32 34
5 9 17 12
6 4 2 3
7 1 1 0
8 13 0 0

Test-Overlap Rate .41 .31 .30
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Item Allocations and Test Assembly under Content Constraints

The previous discussion centered on a simple assembly problem in which only

psychometric constraints had to be met.  However, in most multiple-form assembly problems,

additional conditions or constraints involving content requirements also must be satisfied.  In this

situation there are J content categories, j = 1, 2, …, J, so that the item pool of size n is stratified

into n1, n2, …, nJ mutually exclusive partitions.  The test-assembly specifications require that k1,

k2, …, kJ items from each of these content categories appear on each assembled form, in addition

to psychometric constraints.

The average test-overlap rate increases with additional content constraints because the

required number of items must be drawn from smaller pools of size nj rather than from n.

Therefore, more overlap is expected, especially from those content categories where kj is large

relative to nj.  We can compute the minimal test-overlap rate, minT , that would result if each test

form were assembled by drawing kj items randomly from categories of size nj without

replacement.  Even though the average item-exposure rate will remain equal to (k ÷ n), the

random sampling would be stratified so that the value of Pi would depend upon the content

category for that item.  For stratified random sampling without replacement, the probability of an

item being selected from content category j is (kj ÷ nj).  Thus, from equation (5), the variance of

Pi would not be zero and T would increase.  However, the computation of T from equation (5)

under stratified random sampling would still yield a baseline test-overlap rate to use as a

reference, along with an expected item allocation from equations (7) and (8).

In our sample pool, items were categorized by one of 37 mutually exclusive categories.

One of the categories had only a single item represented in the pool.  The test specifications

called for exactly one item from this category; therefore, it was expected that this item had to



11

appear on all eight forms.  The expected item allocation across eight forms from stratified

random sampling appears in Table 2 in the fourth column.  The item allocation without exposure

control appears in the second column of this table.

Using rj = (kj ÷ nj) as the ideal target, we again experimented by adding a small constant,

δ, to the ideal and found the smallest value of δ that would result in a minimal value of T and

still meet all assembly constraints, both psychometric and content3.  This value was δ = .05.  The

results showed that this reduced the value of T from .49 to .36.

TABLE 2

Item Allocations from the Sample Item Pool with Content Constraints

# of Test Forms

(m)

Without Item-Exposure
Control

(# of Items)

With Item-
Exposure Control
rj= (kj ÷ nj)+ .05

(# of Items)

Random
Distribution
rj = (kj ÷ nj)
(# of Items)

0 41 25 24
1 59 61 51
2 57 50 61
3 32 51 52
4 24 28 34
5 9 20 17
6 4 11 6
7 2 0 1
8 19 1 1

Test-Overlap Rate .49 .36 .35

                                                
3 There is probably an ideal constant, δ j, for each content category, that would produce a slightly better allocation of
items.  The time required to find J such values, however, may not justify the small benefit in this example.  There
may be other situations in which the determination of J distinct values of δ would be worthwhile.
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Summary

Our results indicated that we could control the overall allocation of items across multiple

test forms assembled via automated assembly methods using the same procedure that is used to

control for item exposure in CAT situations.  The iterative procedure was programmed directly

into the form-assembly code.  Thus, no “pre-assembly” work had to be done, as is done in CAT

to obtain the values of Pi(A|S) for later testing.  In this case the iterations were a part of the

assembly process, and the goal was to produce the desired item allocation across forms, rather

than to obtain exposure-control parameters for each item.
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Appendix

We desire the probability that one of k items will be drawn without replacement from an

item pool containing n items.  The easiest way to approach the problem is to compute the

probability that an item will not be drawn, even after k attempts.  Our desired probability is then

the complement of this probability.

The probability that an item will not be drawn on the first attempt is [(n −1) ÷ n].  The

probability that the item will not be drawn without replacement on the second attempt is [(n − 2)

÷ (n − 1)].  For the third attempt, it is [(n − 3) ÷ (n − 2)].  For the kth and last attempt, it is [(n − k)

÷ (n − k + 1) ].  Because these are independent draws, the probability that the item will not be

drawn after all k attempts is their product, or 
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which, after cancellation, simplifies to (n − k) ÷ n.  Therefore, the probability that an item will be

selected without replacement is 1 − (n − k) ÷ n or (k ÷ n). 
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