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ABSTRACT

Methods for predicting specific college course grades, based on small
numbers of observations, were investigated. These methods use collateral
information across potentially diverse institutions to obtain refined within-
group parameter estimates. One method, referred to as pooled least squares
with adjusted intercepts, assumes that slopes and residual variances are homo-
geneous across selected colleges. The second method, referred to as Bayesian
m-group regression, allows estimates of slopes and residual variances to vary
across colleges, without ignoring available collateral information. These
central prediction models were compared with the more usual procedure of
deriving regression equations within each college considered in isolation from
other colleges. It was found that for both models employing collateral infor-
mation, a sample size of 20 resulted in a level of crossvalidated prediction
accuracy comparable to that obtained using the within-college least squares
procedure at colleges with 50 or more observations. The Bayesian approach
outperformed the pooled least squares approach. It is noted that the Bayesian
approach is highly adaptive to different structures and can thus be expected

to outperform the other two procedures across most situations.



Central Prediction Systéms for
Predicting Specific Course Grades

Through the ACT Assessment‘ Progréh, postsecondary institutions can
predict their ffeshmen‘ students' grades 1in specific courses. Typically,
institutions use specific course grade prédictions for placement in courses
requiring varying levels of écédemié developmént. For example, students with
low predicted chances of success iﬁ a sténdard freshman English course might
be advised or required to énroll in a remedial English course. On the other
hand, students with a high predicted brobability of success in an accelerated
course might be encouréged to enrolibin it.

Institutions usualiy make placemént decisions on the basis of explicit
selection on test scoreé; for example; studenté wifﬁ ACT English test scores
less than 16 might be placed in a remedial English course. Through the ACT
Standard Research Service (SRS);‘inéfitutioﬁs can make placement decisions
using all four ACT test scores éﬁd sfudent's self-reported high school grades.
Such placement decisions, 'baséd ‘on ‘mofé infofmation, are potentially more
accurate than decisions based on'single test scores.

The placement rulesﬁderiVeduthfough participation in SRS are based on
prediction equatiohs for specific’wcoursé gfades using student's ACT test
scores in English, mathematics;‘social stuaies, and natural sciences, and the
student's self-reported high'school grades in thesé same areas. Associated
with each prediction equation are an estimated intercept, estimated regression
slopes, and an estimated reéidual vafiance. The multiple correlation
coefficient and residual variance are the standard measures used to assess the
accuracy of the course grade prédictions.

For deciding on whether to place a sﬁudent in a standard level or

remedial course, a predicted grade in the standard level course is computed.
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The predicted grade is then converted into an estimated probability of C or
better (or of B or better). The student is placed in the standard level
course depending on whether his or her estimated probability of success
exceeds a predetermined threshold.

A more sophisticated approach to placement would recognize the costs of
incorrectly placing students in the remedial course (false negative error), as
well as those of incorrectly placing them in the standard course (false
positive error). If false positive and false negative errors are associated
with equal loss, and if correct deeisions carry no loss, then the optimal
decision rule wopld be to admit students to the standard level course when
their estimated probability of success is greater than .5. Other loss
functions, of course, would lead ﬁo different decision rules. In many
applications, the cost of false positive and false negative errors can not be
expected to be the same, and a more systematic, decision theoretic model is
required to establish decision rules for placement.

In another refinement of the procedure, course grades could be
dichotomized, based on the definition of success, and the probability of
success modeled directly. Such procedures reguire nonlinear (e.g. logistic)
regression models, and are the focus of other research being done at ACT.

In evaluating the validity of decision rules for course placement,
nontraditional validation strategies are required. The standard measures of
association used in establishing criterion-related validity, the multiple
correlation coefficient and the residual variance, measure the strength of the
relationship between predictor and criterion variables, averaged across the
range of the predictor score scales. With the assumption of multivariate

normality, these statistics are useful in establishing the validity of
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decision rules for specific course placement (Sawyer, 1988). However, without
an assumption of multivariate normality, these indices are largely
uninformative. In validating placement decision rules, it is perhaps
necessary, but not sufficient to describe the relationship between the
predictor variables and the criterion variable by these traditional indices,

SRS grade predictions are based on within-college least squares (WCLS)
procedures, which use data from each institution separately, in isolation from
the data of other institutions. Potential problems encountered in using
within-group regression equations include the presence of negative regression
weights and a lack of adequate prediction accuracy on crossvalidation. As
sample sizes become .smaller, these problems increase in severity. Other
factors that could lead to these problems are the low reliability of specific
course grades and extreme collinearity among the predictor variables.

The present research investigated alternative methods for predicting the
freshman course grades of students. from their ACT scores and high school
grades. In contrast to within-college 1least squares procedures, the
alternative methods, called central prediction systems, use information from
several institutions collaterally to derive a prediction equation for each
individual institution.

There has been research over the past 20 years (e.g.; Novick, Jackson,
Thayer, & Cole, 1972; Rubin, 1980; Braun, Jones, Rubin, & Thayer, 1983;
Houston, 1987) on both the mathematical and empirically observed properties of
central prediction systems. A typical finding in these studies has been that
using collateral information from several institutions can increase both the

prediction accuracy and the stability of estimated regression weights over
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time. Thus, central prediction systems have the potential to be useful in
situations where small sample sizes would preclude calculating within-group
least squares prediction equations.

Situations where ACT Assessment users frequently express a need for
prediction equations, but where the sample sizes needed for within-group least
squares predictions are not available, include predicting specific course
grades, predicting overall GPAs of students enrolled in different academic
colleges of a university, and predicting overall GPAs of students with special
background characteristics. The ability to predict specific course grades
from small data -sets could greatly increase the number of institutions that
could make full use of AAP data for placement. For this reason, and because
of the need to establish priorities, the current research was limited to the
prediction of specific course grades. We hope to extend the research in the
future to address the other two applications.

The two most common types of central prediction systems are Bayesian m—
group regression and pooled least squares. Bayesian m-group regression uses
the observed variability in least squares regression coefficients and residual
variances acroés institutions to obtain refined estimates of the regression
parameters for each individual institution. The refined parameter estimates
are, roughly speaking, weighted averages of the within-group estimates and the
estimates obtained from averaging the within-group estimates across all
institutions. In the pooled least squareé approach, the regression surfaces
within each institution are assumed parallel, but not coincident. Under this
assumption, estimates of the common slopes are pooled across institutions;
intercepts are not assumed to be constant and are estimated separately for

each institution. The assumptions of the pooled least squares approach are
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identical to the assumptions in traditional analysis of covariance models.
Thus, the pooled least squares approach is hereafter referred to as the ANCOVA
approach,

Bayesian m-group regression models allow estimates of regression slopes
and variances to vary across institutions. They use collateral information
only to the extent appropriate; when colleges differ greatly in their
regression structures, or as sample sizes become large, Bayesian parameter
estimates converge to the within-group 1east squares estimates. Bayesian m—
group regression brings‘to bear the available collateral information for the
estimation of the regression parameters while allowing for potential
differences to exist among groups. Because the m-group regression model does
not commit. one to rigid a priori assumptions about the similarities of the
within-group regression structures across ;olleges, it is more flexible than
the ANCOVA approach.

The ANCOVA model, in contrast, assumes that regression slopes and
residual variances are homogeneous across institutions. To the degree that
institutions differ in their regression slopes, the ANCOVA approach introduces
pfediction bias. To the degree that institutions differ in their residual
variances, this approach introduces bias into the estimated probabilities
associated with grade expectancies. On the other hand, the ANCOVA model is
simpler to implement and operate.than the Bayesian m-group model.

The WCLS model, fhe Bayesian m-group regression model, and the ANCOVA
model may be compared along a continuum. If all of the colleges were entirely
different in their regression structures, then WCLS would likely be more
appropriate than ANCOVA, If all the colleges were very similar in their

regression structures except for intercepts, then the ANCOVA model would be



-6 -

more appropriate. The Bayesian m-group regression model strikes a compromise
between these two positions, and may be heuristically thought of as
encompassing the other two models. Bayesian m-group regression has the effect
of regressing the within-group parameter estimates toward common values.
Unlike the ANCOVA approach, however, the extent of the regression effect is
determined by the data rather than only by assumption.

In many previous empirical studies of Bayesian m¥group regression, the
colleges investigated were specially selected to be very similar in the
demographic characteristics of their students and in their curricula. The
feasibility and cost of identifying highly similar éolleges would appear to
diminish the usefulness of this methodology in routine or large-scale
operations. The current research was desigﬁed. to invéstigate applications
involving small numbers of students enrolled in colleges With potentially
diverse characteristics.

The following research questions are addressed in this study:

1. Do central prediction systems permit caltulating specific course
prediction equations from samples smaller than those currently
required? If so, how much smaller?

2. What is the preferred method of central prediction with respect ‘to
prediction accuracy, practical feasibility, éhd'defenSibility of the
assumptions required?

Both questions were investigated empirically, using real data from diverse

groups of colleges.
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Method
Data Source

Data for this investigation were obtained from colleges that participated
in ACT's Standard Research Service (SRS) during the 1983-84 academic year and
during at least one of the academic years 1984-85, 1985-86, or 1986-87,
Alternative methods were investigated for predicting grades in the following
three specific college courses: writing/grammar, algebra, and biology.
Courses were identified from informaticn collected by Noble and Sawyer (1987).

Colleges were selected so that the number of observations at a given
college for a particular course was less than 100 in the 1983-84 base year and
greater than or equal to 20 in at least one of the crossvalidation years
(1984-85, 1985-86, or 1986-87). Including colleges with both the required and
less than required base year sample size of 50, relative to currently
published SRS guidelines, facilitated making a more precise evaluation of the
potential benefits that may be realized from using collateral information. In
order to obtain a sufficient number of colleges with less than the required
sample size, all analyses were conducted for males and females separately.
Colleges were selected only on the basis of available sample sizes and on our
ability to identify the specific course.

The number of colleges available within each course group and level of
sex; the total number of observations and the ranges of observations within
colleges for both the base year and crossvalidation years, are presented in
Table 1. The term "analysis group" is hereafter used to indicate a particular
course group and level of sex. The colleges within each analysis group were
considered to be exchangeable for the Bayesian portion of the analyses.

Briefly, the assumption of exchangeability implies that one's subjective
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judgements about the within-college regression parameters are the same for all
colleges. See Lindley (1971) for a discussion of this concept.
Procedure

Two ‘different prediction equations were studied: an eight-variable
equation based on the four ACT subtests and the four high school grades, and a
two-variable equation based on the ACT Composite and high school grade point
average. For each prediction equation, regression coefficients and residual
variances were estimated using three different models: within-college least
squares (WCLS), pooled least squares with adjusted intercepts (ANCOVA), and
empirical Bayesian m-group regression.

The specific Bayesian m-group regression model used in this study (Wang,
1988), is an extension of an empirical Bayesian model developed by Rubin
‘(1980) and Braun, Jones, Rubin, and Thayer (1983). 1In all of these models,
data are used to estimate hyperparameters of a common prior distribution on
the within-college regression coefficients (intercept and slopes). The model
in this study (denoted BAYES) differs from the previous empirical m-group
regression models in its treatment of the within-group error variances. In
the BAYES model, data-based estimates are obtained for the degrees of freedom
and scale parameter of the inverse chi-square prior distribution for the
exchangeable within-group error variances. Point estimates of the within-
group regression parameters are taken to be the modes of the posterior
distributions. The mddel developed by Rubin (1980) and Braun, et al. (1983)
uses joint maximum liklihood estimates for the within-group error variances.
The BAYES model used in this study has an empirically determined informative
prior distribution on the within-group error variances and, therefore,

regresses estimates of within-group error variances toward common values. No
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comparable regression of within—groﬁp error variances occurs in the model used
by Rubin (1980) and Braun, et al. (1983). More accurate estimation of
residual variances is important because it permits more accurate estimation of
the probability of course success. The WCLS, ANCOVA, and BAYES models are
described in greater detail by Houston (1987).

Both theoretical considerations and the empifically derived results to
date suggest that using collateral information across groups effectively
increases within-group sample sizes. However, shifts over time in the
population and/or changes in grading standards tend to decrease prediction
accuracy, regardless of the method and sample‘sizes used to derive base year
prediction equations. Therefore, all prediction equations were cross-
validated.

Data from the 1983-84 base year were used to calculate prediction weights
for each of the combinationé of number of predictor‘ variables and three
estimation models. The prediction equations for each institution were then
used to predict the specific course grades’of stﬁdents at the same institution
in the 1984-85, 1985-86, or 1986-87 crossvalidation year. Where adequate
sample sizes were available in more than one crossvalidation year, data from
the latest year were used. Indices of predictive accuracy utilized in the
crossvalidation analyses include mean squared error (MSE), mean absolute error
(MAE), zero-order correlation between predicted and obtained course grades
(R), and prediction bias (BIAS). Colleges were grouped according to base year
sample sizes (<50 and >50), and the distributions of crossvalidation indices

were summarized across institutions.
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Results

For the eight-variable prediction equation, the WCLS model produced a
large number of negative weights. The percentages of negative regression
slopes across colleges and variables and within analysis groups rénged from
297 (biology-female) to 38% (writing/grammar-male; algebra-male).

For three of the six analysis groups, the eight-variable ANCOVA model
’eliminated‘all of the negative regression slopes. For the remaining three
analysis groups, pooled estimates of the regression slopes associated with one
or more of the predictor variables were negative. A negative weight was
associated with the ACT Natural Sciences subtest in all three of these groups.

The BAYES eight-variable prediction model failed to eliminate one or more
of the negative regression slopes in all six analysis groups. In those
analysis groups in which the pooled estimates obtained under the ANCOVA model
were all positive, however, the BAYES model eliminated a substantial portion
of the negative weights obtained with the WCLS model.

For the two-variable prediction equation, negative regression slopes
obtained under the WCLS model were present in 4 of the 6 analysis groups. For
these 4 analysis groups, the percentage of negative slopes across colleges and
variables ranged from 3% (biology-male) to 15% (grammar/writing-male). For
all 6 analysis groups, both the BAYES and ANCOVA two-variable models
eliminated all of the negative regression weights.

Table 2 reports the means and standard deviations, across colleges within
analysis groups, of the estimates of within-college error variances for two
and eight predictor variables and for the three estimation models. For the
eight-variable equation in the writing/grammar-males analysis group, the

arithmetic mean across colleges of the maximum likelihood estimates of the
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Table 2. Means (Standard Deviations) of Base Year
Residual Variances Across Collegesa

Number of Prediction model
predictor b d
Course Sex variables WCLS ANCOVAC BAYES
Writing/grammar Male 8 .59(.26) .73(.00) .68(.14)
2 L74(.28) .75(.00) 740 14)
Female 8 51(.17) .69(.00) .63(.10)
2 .66(.17) .71(.00) .67(.08)
Algebra Male 8 .82(.30) .12(.00) .02(.08)
2 .12(.25) .22(.00) .21(.00)
Female 8 .92(.31) .11(.00) .99(.15)
2 .10(.33) .14(.00) .11(.10)
Biology Male 8 .73(.20) .87(.00) .84(.00)
2 .88(.21) .88(.00) .88(.00)
Female 8 .52(.29) .79(.00) .73(.07)
2 .67(.20) .80(.00) .78(.04)
aQuantities in parentheses are standard deviations across colleges.

bWithin—college estimates are maximum likelihood estimates.

c . . . . . .
Maximum likelihood estimates under the assumption that error variances are
homogeneous across colleges within analysis groups.

dWithin—college estimates are the modes of the marginal posterior distribu-

tions (X_z).
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within-college error variances obtained from the WCLS model is .59. The
standard deviation, across colleges, of these estimates is .26. The ANCOVA
model assumes that residual variances are homogeneous across colleges; under
the assumption of homogeneity, the maximum likelihood estimate of the common
within-college residual variance is .73. The BAYES model estimates the
within-college error variances as the modes of the marginal posterior
distributions on the error variances. The average of these Bayesian point
estimates, across colleges, is .68. Their standard deviation, across
colleges, is .14,

Note in Table 2 that for each analysis group, the BAYES model has sub-
stantially regressed the estimates of within-college error variances toward
common values. The extent of the regression effect is reflected in the
reduction in standard deviations between the WCLS and BAYES models. In three
cases (algebra-male-2 variable; biology-male-8 variable; and biology-male-2
variable), the BAYES model regressed the estimates of within-college error
variances virtually»to a constant., For other analysis groups, the regression
effect was more moderate.

The results of the crossvalidation analyses for each analysis group and
prediction equation are reported in Appendix A. The tables there give the
medians, across colleges within analysis groups, of the following cross-
validation statistics: mean squared error (MSE), mean absolute error (MAE),
zero-order correlationvbetween predicted and observed course grades (R), and
prediction bias (BIAS). Results are provided separately for the two-variable
and eight-variable prediction equations, for the three different estimation

models (WCLS, ANCOVA, and BAYES), and for colleges with different base year
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sample sizes (less than 50 and 50 or more). Results are also given for all
colleges in each analysis group.

With the eight-variable WCLS prediction equations currently used in the
ACT Standard Research Service, prediction accuracy is severely reduced when
base year sample sizes are less than 50 (Sawyer, 1987). A striking example of
this property of WCLS predictions is shown in Table A.l, where the median MSE
across the 8 colleges with base year sample sizes less than 50 is 1.36, as
compared to a median MSE of .69 for colleges with base year sample sizes
greater than or equal to 50.

Under the WCLS model, the two-variable prediction equations were more
accurate on crossvalidation than the eight-variable prediction equations for
every analysis group. Pooled across base year sample sizes and averaged
across analysis groups, the median MSE obtained for the two-variable
prediction equations was 147 less than the median MSE obtained for the eight-
variable equations. Under the ANCOVA and BAYES central prediction models,
only very émall differences between the two-variable and the eight-variable
prediction equations in prediction accuracy on crossvalidation were found.
For both central prediction models, the median MSE obtained for the two-
variable prediction equations was about 17 less than that obtained for the
eight-variable equations.

The comparisons of greatest interest in this study concern the prediction
accuracy associated with the central prediction models at colleges with fewer
than 50 observations in the base year. Table 3 reports differences between
the median MSEs for prediction models at colleges with fewer than 50 base year
observations and the corresponding median WCLS MSEs at colleges with 50 or

more base year observations. These differences are given for each course and
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Table 3. Difference Between Median MSE for Prediction Models at
Institutions With Fewer Than 50 Base Year Observations
and Median MSE for WCLS Model at Institutions With 50
or More Base Year Observations, Averaged Across Sexes

Number of Prediction model

Course predictor variables WCLS ANCOVA BAYES
Writing/grammar | 8 .58 .08 .02

2 .25 .11 .06
Algebra 8 .86 .15 .13

2 .37 .24 14
Biology 8 .36 -.16 - -.18

2 -.01 -.09 -.09
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number of predictor variables, averaged across sexes. Negative differences in
Table 3 reflect smaller MSE (greater prediction éccuracy) for the prediction
models relative to the WCLS model at colleges with large base year sample
sizes; positive quantities reflect larger MSE (lesser prediction accuracy).
For example, the median MSE for males among the 8 colleges with baée'year
sample sizes less than 50 was .68 under the BAYES model (Table A.1). The
median MSE among the 9 colleges with base year sample sizes of 50 or more was
.69 under the WCLS model. Thus, the relevant calculation is .68-.69 = —.0l.
From Table A.3, a similar calculation for females is .71 - .66 = .05. The
average of these two differences is .02, as reported in Table 3.

The results in Table 3 indicate that for writing/grammar and algebra, the
use of the central prediction models at colleges with fewer than 50 base year
observations resulted in only modestly decreased prediction accuracy, as
compared to the prediction accuracy associated with the WCLS model at colleges
with 50 or more base year observations. For biology, the central prediction
models at institutions with small base year sample sizes actually had greater
prediction accuracy than did the WCLS model at institutions with large base
year sample sizes,

It is also useful to state these results as proportionate changes in MSE,
relative to the median MSE associated with the WCLS model at colleges with 50
or more base year observations. For writing/grammar, the increases in median
MSE associated with the BAYES model at institutions with small base year
sample sizes were 37 (eight-variable prediction equation) and 9% (two-variable
prediction equation). For the ANCOVA model, the corresponding increases in
MSE were 11% (eight-variable prediction equation) and 17% (two-variable

prediction equation). For algebra, the increases in MSE associated with the
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BAYES model were 10% (eight-variable) and 117 (two-variable) and the increases
assoéiated with the ANCOVA model were 127 (eight-variable) aﬁd 197 (two-
variable). Using the central prediction models at colleges with fewer than 50
base year observations actuaily decreased median MSE for biology; for the
BAYES model, the decreases were 167 (eight-variable) and 8% (two-variable) and
for the ANCOVA model, they were 15% (eight-variable) and 8% (two-variable).
These same trends were found for mean absolute error (MAE) as well.

vAveraged across analysis groﬁps énd prediction equations, using the BAYES
model at institutions with fewer than 50 base year observations decreased the
correlation between predicted and obtained course grades by 8% relative to the
median correlation using the WCLS model at institutions with 50 or more base
year observations., The corresponding decrease in crossvalidated cotrrelation
using the ANCOVA model was 12%.

We sought to determine minimum within-course sample sizes that would be
feasible using the BAYES model in terms of comparable prediction accuracy
relative to that obtained using the WCLS model with current base year sample
size requirements. To do this, we plotted MSE for the eight-variable predic-
tion equation against base year sample size for the WCLS and BAYES models.
(These plots, for each analysis group, are presented in Appendix B.) We then
fit a curve to the scatterplot for each prediction model using least squares
criteria.

For all 6 analysis groups, logarithmic regression curves adequately
summarized the relationship between crossvalidated MSE and base year sample
size for the WCLS model. For 3 analysis groups, logarithmic regression curves
were also adequate in summarizing the relationship between MSE and base year

sample size for the BAYES model. However, for the analysis groups grammar/
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writing-male, biology—male; and biologv—female, the relationshipubetween MSE
and base year sample size among the data‘was described more effectively hy a
straight line.

The plots in Appendix B indicate that the BAYES model permits calculating
specific course prediction equations’from smaller sample sizes than does the
WCLS model. For example, in Figure B.1 the ordinete ”of the WCLS curve
corresponding to é sample'sizeuofbgO is approximatelv O.91J‘ThewBayes‘iine
lies below this level for ali samole sizes. We are not ciaiwi;é\that the
relationship between 'BAYES MSE and base year sample 51éé is lineer everywhere,
clearly, the BAYES 11ne ‘will at some p01nt start to increase as basevyear
samplevs1ze decreases. The curves in Figure 1 do suggest however, that BAYES
MSE will be less than WCLS MSE at small sample sizes.

Notwithstanding considerations of prediction aeeuracv, the’WClelnooel
requires that the number of w1th1n—group observations be greeter thah. the
number of predictor variables; otherwise, the parameter estimates. are not
uniquely determined. (This requiremeht corresponds‘ to positive degrees of
freedom for error.) As noted by Breun, Jones, Rubin, ano Thayer (1985),
empirical Bayesian models can, in prihciple; be used even when the within-
group data are ‘of deficient rank.’ Although the plots for 2 coorses
(writing/grammar and biology) suggest the possibility thatkadequate prediotion
accuracy might be obtained for colleges with data of deficient rank, we'do.not
recommend permitting sample sizes to be this; 1ow.. Figures B.3 and B.4,
corresponding to the analysis groups algebra—male‘and algebra-female, suggest
that a base year sample size requirement of 20 would result in a reasonable

level of accuracy, relative to that obtained using the WCLS model with the
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current sample size requirement. A similar sample size requirement was found

for the ANCOVA model, as well.

Conclusion

The effectiveness of central prediction models in eliminating the
negative slopes frequently obtained under the WCLS model depends upon the
number of predictor varjables. The results for the eight-variable prediction
equations suggest that neither central prediction model investigated will
eliminate all of the negative regression slopes when there are large numbers
of correlated predictor variables, though the ANCOVA model seems to be some-
what more effective than the BAYES model in this regard. For the two-
variable prediction equations, however, both central prediction models
eliminated all of the negative regression slopes in every analysis group.

Under the WCLS model, the two-variable prediction equations were found to
be more accurate on crossvalidation than the eight-variable equations. For
the central prediction models, on the other hand, the prediction accuracy
obtained for the two-variable and eight-variable equations were essentially
the same,

The results of this research are consistent with previous findings that
central prediction models permit calculating prediction equations from fewer
obserﬁations than are required with standard least squares methods. Only a
slight reduction in prediction accuracy was found, relative to that obtained
using the WCLS model with the current sample size requirement of 50. Averaged
across analysis groups and number of predictor variables, using the BAYES
model at institutions with less than 50 base year observations resulted in a

1.5% increase in MSE relative to the MSE obtained using the WCLS model at
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colleges with 50 or more base year observations. The corresponding increase
in MSE for the ANCOVA model was 6%. Our analysis‘indicates that under either
the BAYES or ANCOVA models, a base year sample of 20 observations would result
in a level of accuracy comparable. to that obtained using current procedures.

The BAYES and ANCOVA central prediction models achieved comparable levels
of prediction accuracy, with the BAYES model s1ighfly outperforming the ANCOVA
model. This result is consistent with results for predicting’ffeéhmén'GPA, as
reported by Houston (1987).

We have demonstrated that both central prediction models aré prattiéélly
feasible. All of the prediction models investigated (WCLS, BAYES;”énd'ANCOVA)
require calculating a sum ‘of squares and cross ' products matrix of the
predictor and criterion variables within each group. ' Given that the elemerits
of these matrices have been calculated, the additionadl cost ‘of *ﬁéiﬁé' the
central prediction models is small.

Moreover, the ANCOVA model makes the assumptions that the within-group
regression surfaces are:parallel and that the residual variances about each
regression surface are homogeneous across groups. To the extent that coileges
are carefully selected for inclusion into the central prediction system, the
assumptions required by the ANCOVA 'model may be defensiblé; ‘Hdwever,‘in large
scale operations, a careful matching of colleges based on similarities in
curricula and demographic characteristics of their students is not feasible.

Bayesian m-group regression models assume that the colleges are exchange-
able, i.e., subjective a priori judgments about the within-college regression
parameters are the same for all colleges in the system. The defining charac-
teristics that colleges must possess in order to be considered exchangeable

should, of course, be modified and extended, as warranted by experience.



- 21 =

Because the Bayesian approach is highly adaptive to different regression
structures, practically feasible and theoretically defensible, and slightly
more accurate on crossvalidation than the pooled least squares approach, we

believe the m-group regression model is preferable.
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Appendix A

Crossvalidation Statistics for the WCLS, ANCOVA, and BAYES

Prediction Models, by Course Group, Sex, and Number of Predictors
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Table A.1. Medians, Across Institutions, of Crossvalidation Statistics

Course:

Sex: Male

Number of predictors:

Writing/Grammar

8

Base year sample size

Prediction Crossvalidation Less than 50 orb All
model statistic 502 more institutions
WCLS MSE 1.36 .69 1.03
MAE .94 .66 .81
R 21 .37 34
BIAS - .11 .13 - .12
ANCOVA MSE .75 .69 .72
MAE .68 .65 .67
R o A7 .46
BIAS - .08 .16 - .10
BAYES MSE .68 .66 .66
MAE .65 .63 .64
R 46 A7 A7
BIAS - .08 .13 - .09

8 8 institutions

9 dinstitutions
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Table A.2. Medians, Across Institutions, of Crossvalidation Statistics
Course: Writing/Grammar
Sex: Male
Number of predictors: 2

Base year sample size

Prediction Crossvalidation Less than 50 or All
model statistic 502 - more institutions
WCLS MSE .90 .70 .86
MAE .76 .64 .73
R .27 43 .40
BIAS -.18 -.20 -.20
ANCOVA MSE .78 .70 77
MAE .70 ‘ .64 .69
R A .45 A5
BIAS . -.10 -.18 -.10
BAYES MSE .72 .68 .68
MAFE .66 .62 .63
R v .45 45
BIAS ~.14 -.15 -.14

ag institutions

9 institutions
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Table A.3. Medians, Across Institutions, of Crossvalidation Statistics
Course: Writing/Grammar
Sex: Female
Number of predictors: 8

Base year sample size

Prediction Crossvalidation Less than 50 orb All
model statistic 502 more ~dinstitutions
WCLS MSE 1.15 .66 .81
MAE .87 .65 .70
R .24 .50 .43
BIAS .26 -.00 .01
ANCOVA MSE .75 .61 .66
MAE .66 .62 .64
R .29 .59 .53
BIAS .01 .06 .03
BAYES MSE .71 .61 .66
MAE .65 .62 .63
R 31 .58 54
BIAS - .02 .01 .00
a

5 institutions

11 institutions
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Table A.4. Medians, Across Institutions, of Crossvalidation Statistics
Course: Writing/Grammar
Sex: Female
Number of predictors: 2

Base year sample size

Prediction Crossvalidation . Less than 50 or All
model statistic 502 more institutions
WCLS MSE .87 .58 .64
MAE .73 .62 .64
R .31 .58 .48
BIAS -.06 .06 .02
ANCOVA MSE .71 .58 .66
MAE .67 .62 .65
R .30 .58 .50
BIAS .01 ' .03 .02
BAYES MSE .67 .57 .64
MAE .66 .60 .63
R .33 .59 .53
BIAS ' .01 .04 .03
a

5 institutions

11 institutions
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Table A.5. Medians, Across Institutions, of Crossvalidation Statistics
Course: Algebra
Sex: Male
Number of predictors: 8

Base year sample size
Prediction Crossvalidation Less than 50 or All

model statistic 502 more institutions
WCLS MSE 2,34 1.37 1.65
MAE 1.16 .96 1.08
R .21 A7 .33
BIAS - .03 .07 .06
ANCOVA MSE 1.42 1.24 1.37
MAE .96 .93 .94
R Jbb .50 .48
BIAS .11 - .00 - .00
BAYES MSE 1.41 1.21 1.34
MAE .94 .90 .91
R v .53 A7
BIAS .05 - .05 - .04

a . . .
6 institutions

7 institutions
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Table A.6. Medians, Across Institutions, of Crossvalidation Statistics
Course: Algebra
Sex: Male
Number of predictors: 2

Base year sample size

Prediction Crossvalidation Less than 50 or, All
model statistic . 502 more institutions
WCLS MSE 1.72 1.31 1.40
MAE 1.06 .92 1.00
R .35 .48 o
BIAS - .05 - .07 - .07
ANCOVA MSE 1.51 1.25 1.34
MAE 1.02 .93 .97
R .43 47 i
BIAS .02 - .05 .01
BAYES MSE 1.38 1.20 1.31
MAE .98 .90 .95
R .45 48 .46
BIAS .01 - .12 .00

8 6 institutions

7 institutions
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Table A.7. Medians, Across Institutions, of Crossvalidation Statistics
Course: Algebra
Sex: Female
Number of predictors: 8

Base year sample size

Prediction Crossvalidation Less than 50 or All
model statistic 502 more institutions
WCLS MSE 1.93 1.19 1.33
MAE 1.09 .87 .91
R .32 .51 .35
BIAS - 45 .03 - .02
ANCOVA MSE 1.44 1.17 1.18
MAE 1.01 .83 .88
R .37 .53 .50
BIAS - .32 .09 .01
BAYES MSE 1.40 1.13 1.16
MAE .99 .84 .88
R .39 .56 .52
BIAS - .27 .09 - .02

a5 institutions

6 institutions
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Table A.8. Medians, Across Institutions, of Crossvalidation Statistics
Course: Algebra S
Sex: Female
Number of predictors: 2

Base year sample size

Prediction Crossvalidation Less than 50 or All
model statistic ' 502 more institutions

WCLS MSE 1.52 1.19 1.21
' MAE 1.04 .88 .89

R .38 .53 .52

BIAS ~ - .34 .08 .01

ANCOVA MSE 1.46 1.18 1.21
MAE 1.03 ' .86 91

R .36 .57 .53

BIAS - .33 .09 .04

BAYES MSE 1.39 , 1.17 1.13
MAE .98 .84 .87

R .43 .57 .53

BIAS - .21 ’ .09 - .07

@ 5 institutions

6 institutions



- 33 -

Table A.9. Medians, Across Institutions, of Crossvalidation Statistics
Course: Biology
Sex: Male
Number of predictors: 8

Base year sample size

Prediction Crossvalidation Less than 50 orb All
model statistic 502 more institutions
WCLS MSE 1.62 1.17 1.18
MAE 1.03 .83 .88
R .38 .50 A5
BIAS .17 .20 .20
ANCOVA MSE .93 1.12 1.12
MAE .76 .82 .81
R b .51 .50
BIAS .14 .12 12
BAYES MSE .90 1.03 1.02
MAE .72 .80 .80
R v .54 .54

BIAS .02 .20 .11

8 6 institutions

b 9 institutions
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Table A.10. Medians, Across Institutions, of Crossvalldatlon Statlstlcs
Course: Biology : :
Sex: Male
Number of predictors: 2

Base year sample size

Prediction Crossvalidation Less than 50 or All
model statistic- SOa»,*~ more institutions
WCLS MSE C '1.00 1.07 1.07
MAE .81 .83 .83
R 42 .53 .49
BIAS .06 .11 .11
ANCOVA MSE .92 1.02 .99
MAE .78 .81 .81
R b4 .53 .52
BIAS ‘ .14 .10 .11
BAYES MSE .93 .99 .99
MAE , .75 .80 .80
R A : .54 .53
BIAS .02 .18 .07

8 6 institutions

b 9 institutions
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Table A.11. Medians, Across Institutions, of Crossvalidation Statistics
Course: Biology
Sex: Female
Number of predictors: 8

Base year sample size

Prediction Crossvalidation Less than 50 or All
model statistic 502 more institutions
WCLS MSE 1.26 1.00 1.07
MAE .96 .79 .83
R 42 .54 .53
BIAS .17 - .00 .07
ANCOVA MSE .92 .90 .91
MAE .83 .76 .80
R ‘ .65 .59 .59
BIAS .15 .01 .08
BAYES MSE .91 .90 .89
MAE .78 .76 .79
R .68 .61 .62
BIAS .05 - .00 .03

a 9 institutions

7 institutions
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Table A.12, Medians, Across Institutions, of Crossvalldatlon Statlstlcs
Course: Biology
Sex: Female
Number of predictors: 2

Base year sample size

Prediction Crossvalidation Less than 50 or - All
model ‘statistic 50 o more institutions
WCLS MSE .96 .92 .93
MAE .80 77 .78
R .59 .61 .60
BIAS 14 -.01 .08
ANCOVA MSE .90 .90 .90
MAE 77 .76 77
R .68 S .61 .61
BIAS .16 v .01 .08
BAYES MSE .89 ) .88 .88
MAE .79 74 .78
R .68 ' .62 .62
BIAS .00 -.01 -.00

a 9 institutions

7 institutions
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Appendix B

Plots of Crossvalidated Mean Squared Error Against Base Year
Sample Size for the WCLS and BAYES Models,
by Course Group and Sex

(Eight-Variable Prediction Equation)
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Figure B.1 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Writing/Grammar-Male)
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Figure B.2 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Writing/Grammar-Female)
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Figure B.3 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Algebra-Male)
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Figure B.4 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Algebra-Female)
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Figure B.5 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Biology-Male)



- 43 -

B -
+

5 -

4 -
o
= WCLS
(]
o .
[+}]
s + WCLS
=
o
o o BAYES
[ =
(4]
Q
=

BAYES

0 20 40 60 80 100

Base year sample size

Figure B.6 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Biology-Female)





