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ABSTRACT

This paper considers three methods of estimating test score distributions
that potentially improve upon the observed frequencies as estimates of a
population test score distribution: the kernel method, the polynomial method,
and the 4-parameter beta binomial method. The assumption each method makes
about the smoothness of the true distribution and computational details of the
methods are described. The methods are compared with a simulation study in
which 500 samples of size 500, 1000, 2000, and 5000 are taken from each of 3
population distributions. The three population distributions are defined
using observed raw score distributions on three tests for which a large number
of examinees are available. All the methods based on smoothness assumptions
performed far better than using the observed frequencies. The differences
among the performance of the methods were small compared to the difference
between performance of the worse performing method and using observed
frequencies. The 4-parameter beta binomial method performed best in the
simulation study across all conditions, although the polynomial method
performed equivalently for sample sizes of 5000. The polynomial method
generally performed better than the kernel method except for one of the
populations for which the test score distribution was relatively flat.
Conclusions and suggestions are offered concerning the use of the methods in

practice.
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This paper will investigate three methods for potentially improving on
observed frequencies as estimates of a population raw test score
distribution. These methods have the potential to provide better results than
using the observed frequencies in applications in which the estimates of the
population raw test score distribution are used. Examples of such
applications are: describing and comparing raw test score distributions,
constructing norms, and equating using equipercentile methods (Kolen, 1988).

The potential improvement offered by each of the three estimation methods
is based on introducing assumptions about the smoothness of the population
distribution. The methods are distinguished by the specific assumptions about
the smoothness of the population distribution that are made. The success of
each method in any specific case will depend on the appropriateness of the
smoothness assumptions made by the method for that case.

In order to evaluate the improvement of "an estimation technique based on
smoothness assumptions over using observed frequencies it is necessary to have
a criterion to measuring the performance of an estimation method. In this
paper the primary measure of the performance of an estimation method for a
particular sample will be average squared error defined as
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ASE = y (B - £, (1)
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where K is the number of items on the test, f(i) is the true probability of
raw score i, and (i) is an estimate of f(i). Across samples, the expected
value of ASE (E[ASE]) will be used as a criterion. E[ASE] will be referred to
as mean squared error (MSE). The mean squared error can be written as the sum

of two quantities to be referred to as bias squared and variance
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Methods of discrete density estimation based on smoothness assumptions
have reduced variance as compared to the observed frequencies but generally
introduce bias (whereas the observed frequencies are unbiased estimates of the
true frequencies).

The next section describes three density estimation methods based on
smoothness assumptions. The following section describes a simulation study
comparing the three methods.

Density Estimation Methods

‘This section describes the smoothness assumptions that are the basis of
the three density estimation methods to be compared and the computational
details for each method.

Kernel Techniques

If £f(i) is the probability of raw score, i, i = 0, ..., K, in the
observed sample, then the kernel estimate of the true probability of raw score
i (£(i)) is given by a local weighted average of f(j), for j in a neighborhood

of i. Specifically, the locally weighted average of f(j) is computed as

i+h./2
i hi ~

wi(j -1+ 5—) £C3) , (3)

j=i-hi/2

a(i)

where £(j)

0 if j<0or j>K, and h; (an even positive integer) is a
parameter that determines the width of the local neighborhood of raw score 1
over which the weighted average is taken. The wi(k) >0, k=0, ..., h, are
referred to as the kernel for raw score i. The wi(k) are taken to sum to 1

over k, so that the kernel is a discrete probability distribution. The kernel



estimate of f(i) is given in terms of the a(i) as
i -_—
k koo (4)

If £(i) = £(i) + e(i), where e(i) = £(i) - £(i), then the smoothness
assumption under which the kernel technique works well is that the variation
in £(i) in the neighborhood of i used to compute a(i) is "small" compared to

the variation in e(i) in that neighborhood. To see this write fk(i) as

i+h. /2
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where w?(j - i+ (hi/2)) = (5)

From Equation 5 it is seen that the variance of Ek(i) only depends on the
terms w?(j - i+ (hi/2))Ae(j). Hence, the variance of fk(i) will, in most
practical situations, be less than the variance of Ek(i) due to
wi(j - i+ (hi/Z)) being less than 1 for all j. The bias of fk(i) is given by
the difference of f(i) and the sum of w?(j - i+ (hi/2)) £(j), which will not
in general be zero. The kernel technique will work well for estimating £(i)
when the bias introduced is less than the reduction of variance, which will
occur when f(j) is smooth in the sense that for the sample size under
consideration the variation of f(j) is less than the variation in e(j) in the
neighborhood of i used to compute fk(i).

Application of the kernel method to produce a density estimate requires

selection of the kernel (wi(k)) and window widths (hi) for all raw score

points i. In this paper the binomial kernel will be used. For window width



h, the binomial kernel is w(k) = prob(Z = k), where the random variable Z has
a binomial distribution with parameters h and .5.

Given the kernel to be used, producing a kernel density estimate then
reduces to selecting the window widths (hi) to use at each raw score point.
This task is made simpler by requiring h: = h be constant for all raw score
points. The kernel method with h constant across raw score points will be
referred to as the fixed kernel method. The kernel method in which the h: are
allowed to vary across raw score points will be referred to as the variable
kernel method.

The strategy to be employed in choosing h for the fixed kernel method
will be to estimate ASE for different values of h and choose the h such that
the estimated ASE is minimized. Cross validation will be used to estimate
ASE.

Efron (1983, remark B) and Wong (1983)7discuss using bootstrap, jackknife
and cross validation methods for choosing smoothing parameters in density
estimation. The discussion here will follow Efron (1983). Writing

(£(i) - £(i))2 = E(i)2 + £(i)2 - 2 ¥(i) £(i), it can be seen that minimizing
ASE is equivalent to minimizing the quantity
k k
Err = ) [E(i)]2 -2 ) f£(i) E(Q) . (6)
i=0 i=0
An obvious estimate of Err is given by replacing the unknown quantity £(i)
with E(i). This estimate will tend to underestimate Err since f(i) is
computed using ;(i), and will be referred to as the over-optimistic estimate
of Err (and denoted err). For the purposes of choosing a window width, using
err as an estimate of Err will always result in the smallest window width

being chosen. Let w = E(Err - err) be the expected amount by which err



underestimates Err. If w were known then an estimate of Err, which would be
better than using err, could be obtained as: err + w.

The bootstrap estimate of w is obtained by taking the expectation used to
define w over E(i) rather f(i). The bootstrap estimate of w is given by
; boot * §
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where the "*" indicates sampling from f(i). Therefore, f (i) is an estimate

of the true density based on a sample density f”(i), which is a sample from

£(i), and E* indicates an expectation over sampling from f(i). w boot can

be computed by Monte Carlo methods as follows. B samples

(fxb(i), b=1, ..., b) are simulated from f(i) and the estimated density

“ boot

(?wb(i)) is computed for each sample. w is then approximated by
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w boot is added to err to produce an estimate of Err.
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The jackknife estimate of w is a second order approximation of w

(Efron, 1983, 1982) given by
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n is the sample size, and f_j(i) is the density estimate using f_j(l) in place
of £(2), & =0, ..., K. The jackknife estimate of w is less computationally
burdensome than computing the bootstrap estimate by Monte Carlo methods.

The cross-validation estimate of Err is a modification of err with

f_i(i) in place of f(i) in the expression involving £(i):
A ey K K .
Err”” = ) [E(i)]2 -2 ) £(i) E_ (i) (10)
i=0 i=0 t

This modification should reduce the overestimation of err. The cross=

validation estimate of w is given by:

e ] B - E_L (D) £(1)) (11)
1=0

Comparing Equations 11 and 9 it is'expected that the cross-validation estimate
of Err and the jackknife estimate of Err will be similar. Efron (1983) found
this to be true with cross-validation and jackknife estimates of prediction

~ error in a dichotomous prediction problem. As is seen by comparing Equations
11 and 9, the cross-validation estimate of Err requires less computation than
the jackknife estimate.

Kolen (1988) shows that for the fixed kernel density estimate a simple
approximate expression exists for the cross-validation estimate‘of Err which
only requires one kernel estimate be computed for each value of h. The
expression derived here uses a slightly different approximation than the
expression given by Kolen (1988), but the two expressions seem to produce very

similar results.



First, note that if fk (i) is the fixed kernel estimate with window width
h

h then fk _i(i) (the estimate based on f i(2) rather than
" -
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where a_;(i) is given by Equation 3 with f-i(i) substituted for £(i). If the

sum of a_j(j) is approximately equal to the sum of a(j) then f -i(i) can be

k
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*(h/2)
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Substituting this approximate expression for f_i(i) in Equation 10 gives an
approximate cross-validation estimate of Err for the kernel estimate with
window width h:

K K . ¥
Bert? =+ 1R, 12- ) ] ROE () - 22 (14)
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The expression for the approximate cross-validation estimate of Err given by
Equation 14 is computationally efficient in that it only requires the kernel
estimate to be computed once for each h.

The fixed kernel estimate used in this paper is obtained by computing the
kernel estimate (using the binomial kernel) for h = 2, 4, ..., 36 and choosing

the h that minimizes Equation l4.



Table 1 presents results from a small simulation study comparing the

~

performance of Equation 14 with the bootstrap estimate of Err using w boot

| from Equation 7 in choosing the value of h that minimizes Err for the kernel
estimate (200 bootstrap samples were used). Ten samples of size 1000 were
simulated from a 4-parameter beta binomial distribution (Lord, 1965) that was
fit to a raw score distribution of 980 college-bound 10th grade examinees on a
recent form of the 50-item P-ACT+ writing test. For each of the 10 samples,
fixed kernel estimates using values of h from 2 to 36 were computed and Err
 was estimated with the bootstrap using Equation 7 and cross validation using

j Equation 14. Table 1 presents the values of h and corresponding values of Err
i chosen by both the bootstrap and cross validation along with the h that
produces the minimum Err for each sample. For 6 of the 10 samples the kernel
estimate using the h picked by the bootstrap has lower Err than the

. corresponding estimate using the h picked by cross validation. For two of the
samples the estimate using the h picked by cross validation has lower Err than
the estimate using the h picked by the bootstrap. For the remaining two
samples the same value of h is picked by both cross validation and the
bootstrap. The average error across samples using cross validation is
slightly lower than the average error using the bootstrap.

Even though the results reported in Table 1 are very limited, they
suggest that choosing h using the approximate cross-validation formula (14)
can work fairly well compared to the bootstrap, with sample sizes of around
1000.

Estimates of Err can also be obtained at each score point. Equating 14

can be written as

K .
Errc’ = ) Errl (i) (15)



where érrﬁv(i) = [fkh(i)]2 -2 E(i) [HQT fkh(i) - E%T w*(h/Z)] .
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Each Errh (i) is a cross-validation estimate of

Errh(i) = [fk (1)]12 - 2f(1) fk (i). Equation 15 could be used in a manner
h h
analogous to the use of Equation 14 in the fixed-kernel method to choose a

value of h for each raw score value.
The variable kernel estimate used in this paper is obtained by computing
the kernel estimate for values of h from 2 through 36 and at each raw score

A

point i, choosing the hi that minimizes Err"'(i). The resulting values of hi

h
are then smoothed as a function of i using a robust 3RSS median smoother twice
(Tukey, 1977). The purpose of smoothing the values of h; chosen by cross
validation is to reduce large fluctuations in the values of h; as a function

of i.

Polynomial Method

The polynomial smoothing method is based on the following smoothness

assumption:

) . .d
0 + a,i + 0212 + ... + a,i ’

where d is small relative to K. The true density is assumed to be smooth in

log(f(i)) = a (16)
the sense that its log is a low order polynomial function of the raw score.
When d = K Equation 16 will hold for any £(i); i.e., in this case Equation 16
is a representation of f(i) rather than a model. Haberman (1974) discusses
estimation and the selection of d for a generalization of the model of
Equation 16 in which two ordered éategories are modeled. Rosenbaum and Thayer
(1987) discuss using the Haberman model for the estimation of bivariate raw
test score distributionms.

There are two nice properties of maximum likelihood estimates of the

parameters in Equation 16 (Darroch and Ratcliff, 1972). First, if maximum
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likelihood is used to fit a model of degree d then the first d moments of the
estimates and observed distributions will be the same. Second, the maximum
likelihood estimate of the distribution given by Equation 16 is the
distribution with maximum entropy of those discrete distributions whose first
d moments are equal to the first d moments of the observed distribution.

The polynomial method of density estimation using the distribution given
by Equation 16 involves two steps: selection of a value of d, and estimation
of the parameters in Equation 16 by maximum likelihood using the value of d
chosen.

In this paper, Haberman's (1974) model selection strategy will be used to
choose d. First, the value of q is chosen such that the true density fits the
model given by Equation 16 with d at most equal to q. If Lf is the

likelihood ratio chi-square for the maximum likelihood fit of the model of

degree i then for j =2, ..., q, L%_l - L§ is the likelihood ratio chi-square
for the null hypothesis Hj—l versus Hj’ where Hj is the hypothesis that the

model of degree j is true. Haberman (1974) states that if H., is true then

j*
the statistics Lg_l - L% for J=q, q -1, «c., jx + 1 are asymptotically
independent chi-square distributions with 1 degree of freedom. For a level of

* - 3 .
significance y, with y =1 - (1 - Y)l/(q 1), the probability that

v % R
L§_1 - L;’ i =q,q9q=-1, «eey jJ + 1 exceeds C, the upper y percentage point

for the chi-square distribution with 1 degree of freedom is asymptotically no
greater than y. A simultaneous test of the hypotheses Hj’ ji=q-=-1,q - 2,
«eey 1, is to reject all hypotheses Hj such that j < j*, where j° is the
largest j such that L§_1 - Lg > C. With values of q and y specified, this

hypothesis testing procedure would allow one to eliminate from consideration

models with degrees less than j°} it gives no guidance for choosing from among
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the models with degree greater than or equal to j* and less than or equal
to q.

The rationale of Haberman's model selection procedure, based on
identifying the "true" model, is not necessarily consistent with the goal of
selecting a model that minimizes the average squared error (Equation 1) for a
sample. Even if there were a model with degree less than K that produced an
estimate that was identical to the true density, there is no reason why this
degree would minimize the average squared error for a partiéular sample, a
degree higher or lower than the true degree may have a smaller average squared
error for the sample. Using a bootstrap, jackknife, or cross-validation
estimate of Err to choose a model might work better than the hypothesis
testing procedure, although any of these resampling procedures would require
extensive computation. There is no formula analogous to that of Equation 14
for the fixed kernel method that would give an estimate of Err based on
fitting model given by Eduation 16 one time for each degree.

In this paper values of q = 10 and v = .10 will be used for the
polynomial estimation method. The model with the smallest number of
parameters that is not rejected by the Haberman procedure will be used as the
degree of polynomial to be fit. Equation 16 will be estimated by maximum
likelihood using the Newton-Raphson algorithm (Haberman, 1974) for the degree
of polynomial chosen.

Beta Binomial Method

The 4-parameter beta binomial method makes the most specific smoothness
assumptions of the methods considered in this paper. This method assumes the
true density is a member of a four parameter family of smooth densities: the
four parameter beta binomial distribution (Lord, 1965). The rationale behind

the use of this family of densities is a strong true score model in which
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examinee true scores are assumed to have a four parameter beta distribution,
and the distribution of raw scores conditional on true score is binomial. A
two-term approximation to the compound binomial can be used in place of the
binomial, but in practice this does not seem to improve the fit to raw score
distributions over using the binomial (Lord, 1965). Two of the parameters of
the four parameter beta distribution (denoted p and q) determine the shape of
the distribution (i.e., they completely determine all properties of the
distribution except scale and location). The remaining two parameters
(denoted a and b) are the lower and upper limits of the proportion correct
true score distribution. The true score distribution has nonzero density only
between the lower and upper limits.

In this paper, the method of moments will be used to estimate the four
parameters (Lord, 1965). First, the formula for the relation of raw score to
true score moments given by Lord (1965) is used to produce estimates of the
first four true score moments from estimates of the first four raw score
moments. The parameters are then calculated using an expression giving the
parameters in terms of the first four true score moments. This expression is
obtained by solving the equations giving the mean, variance, skewness, and
kurposis of a 4-parameter beta distribution in terms of p, q, a, and b for the
parameters. The solution for p and q given by Johnson and Kotz (1970, their
Equation 13, page 41) is incorrect. The correct solution for p and q can be
obtained using their expression for r = p + q (which is correct) given above
their Equation 13 to solve their Equations 8.3 and 8.4 for p and q. The
expressions for parameters a and b are then obtained using these expressions
for p and q and solving the equations giving the mean and variance in terms of

P, q, 8, and b for a and b.
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In some cases, the expression for the parameters in terms of the true
score moments will not have a solution, or the solution will contain one or
more invalid parameter.values (e.g., an upper limit greater than 1). 1In this
case, parameter estimates are found by requiring that the mean, variance, and
skewness of the observed and fitted distribution agree, which will determine
three of the four parameters (p, q, and b are used here), and choosing the
value of the fourth parameter (a) that minimizes the squared difference in the
observed and fitted kurtosis. This procedure was successful in producing
parameter estimates for all the actual and simulated data sets considered in
this paper, i.e., in all cases parameter estimates could be found such that at
least the first three moments of the observed and fitted raw score
distributions agreed.

Equation (59) of Lord (1964) was used to compute the estiméted 4~
parameter beta binomial raw score distribution using the 4 estimates
parameters of the beta distribution (this expression for the raw score
distribution does not appear in Lord, 1965).

Illustration of the Estimation Methods

Figures 1 and 2 present 4-parameter beta binomial, polynomial, fixed
kernel, and variable kernel estimates for two data sets. Figure 1l presents
the raw score distribution for 3039 examinees for a recent form of the ACT
Mathematics test. Figure 2 presents the raw score distribution for 1727 1llth
grade examinees on a recent form of the P-ACT+ Writing test (this data was
obtained from a special study in thch the P-ACT+ was administered). For the
data in Figure 1 a polynomial of degree 5 and a fixed kernel window width of 8
were chosen using the procedures described above. For the data in Figure 2 a

polynomial of degree 6 and a fixed kernel window width of 2 were chosen.
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For both data sets the 4-parameter beta binomial and polynomial methods
produced good fits. The kernel methods provided good fits for the data in
Figure 1, although the kernel fits were more bumpy than the fits of the other
two methods. The window widths chosen 5} the kernel methods for the data in
Figure 2 do not seem to provide enough smoothing.

A Study Comparing the Estimation Methods

The primary criterion used in this paper for evaluating the performance
of an estimation method across samples is the mean squared error given in
Equation 2. A simulation study similar to that of Cope and Kolen (1987) is
used here to provide some information on the relative performance of the
estimation methods in terms of the mean squared error for some realistic
situations. Observed raw score distributions for tests for which data from a
very large number of examinees are available are used as population
distributions. Monte Carlo methods are used to estimate the mean squared
errors for each of the methods for several samples sizes.

Data

Data from three tests will be used as population distributions. The
first test is a 200-item multiple choice licensure test. Due to the amount of
computation involved in computing the estimates for a large number of samples
for a 200-item test, only the 59 internal anchor items will be used. The 59-
item internal anchor is designed as a shorter parallel version of the full
200-item test. For this study responses to 39,149 examinees from a recent
test date were used as a population distribution.

For the other two population distributions, data from the responses of
230,065 examinees on the Mathematics and Social Sciences tests for a recent
October administration of the ACT Assessment were used. Population

distributions for each test were defined as the observed frequency
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distributions of raw scores. Examinees with zero raw scores (5 examinees for
the Mathematics test and 33 examinees for the Social Sciences test) were not
used in order to eliminate examinees who did not respond to any of the items
on the test or whose responses were hand scored, in which case a raw score of
zero was reported in the data set used. This had the effect of setting £(0)
equal to 0 for both tests.

Figure 3 presents the three ;opulation distributions used in this study.
Method

For each of the three population distributions 500 samples with sample
sizes 500, 1000, 2000, and 5000 were simulated. For each of the 6000 samples
(3 population distributions by 4 sample sizes by 500 samples) the variable
kernel, fixed kernel, 4-parameter beta binomial and polynomial estimates of
the true distribution were computed. Thus, including the observed
frequencies, five estimates of the population distribution were computed for
each sample.

For each estimation method, sample size, and population distribution the
average of the values of ASE over the 500 samples was taken as an estimate of
MSE. In addition, bias squared and variance were also estimated as averages
over the 500 samples of the appropriate values given in Equation 2.

The maximum absolute difference between the population and estimated
cumulative relative frequencies was also computed for each estimation method
in each sample. The average of tﬁese values over the 500 samples will be used
as an additional criterion in judging the relative performance of the
estimation methods (this criterion will be denoted K-S because it is based on
a Komolgorov-Smirnov type statistic (Conover, 1980)). The reason for

considering K-S is that for some applications, such as calculating norms and
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equipercentile equating, the estimated cumulative relative frequencies rather
than the relative frequencies are used.

Results

Tables 2, 3, and 4 contain the results for the populations corresponding
to the licensure test, ACT Mathematics test, and ACT Social Science test,
respectively. In each table estimates computed using the 500 samples for each
sample size of MSE, bias squared, variance and K-S are reported for each of
the five estimation methods (in addition, the standard errors of K;S are
given). Figures 4 and 5 contain plots of estimates of MSE; and variancei as a
function of raw score for the licensure and ACT Mathematics tests,

respectively, for a sample size of 1000, where
MSE. = E[E(i) - £(i)]2
variancei = E[F(i) - E(E(1)))2 . (17)

In the following discussion of the results, MSE and K-S are not

distinguished because of the similarity of the results for the two criteria.

~ Tables 2 through 4 show that all the estimation methods based on
smoothness assumptions performed better than using the observed frequencies.
For samples sizes less than 5000 the 4-parameter beta binomial method
performed better than the other methods. For a sample size of 5000 the é4-
parameter beta binomial and polynomial methods performed about equivalently
and better than the kernel methods.

The polynomial method had the lowest bias of the four methods based on
smoothness assumptions for all cases in Tables 2, 3, and 4, except for sample
sizes of 500 and 1000 for the ACT Mathematics test. The 4-parameter beta
binomial method had the lowest variance of all the methods for all cases in

Tables 2, 3, and 4.
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The variable kernel method did not consistently perform better than the
fixed kernel method. For the licensure test the fixed kernel method performed
better than the variable kernel method for all sample sizes. For the ACT
tests the variable kernel method tended to have lower MSE than the fixed
kernel method for the higher sample sizes (2000 and 5000 for mathematics and
1000, 2000, and 5000 for social sciences), and lower bias but greater variance
than the fixed kernel method for sample sizes of 2000 and less.

The polynomial method performed worse than the kernel methods for the ACT
Mathematics test for all sample sizes except 5000 and performed worse than the
fixed kernel method for the ACT Social Science test for the sample size of
500. This is in contrast to the polynomial method performing better than the
kernel methods in all other cases.

The results in Table 3 for the ACT Mathematics test can be compared to
the results in Table 3 of Cope and Kolen (1987), which reports results
analogous to those reported here from a simulation study using as a population
distribution data from an October administration (from a different year than
used here) of the ACT Mathematics test. The values MSE and K-S in Cope and
Kolen's Table 3 for the observed relative frequencies and the 4-parameter beta
binomial method (the only two estimation methods in common with the present
study) are very similar to those reported here in Table 3. Cope and Kolen
investigated kernel methods in which h was fixed across all samples. For
éxample, their h = 4 kernel methoa used an - h of 4 for all samples. The fixed
kernel method used here performed better than the best performing kernel
method at cach sample size in Cope and Kolen.

Discussion and Conclusions
The differences between the methods based on smoothness assumptions and

using observed frequencies was smaller for K-S than for MSE, although the
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pattern of results were generally the same for both criteria. In fact, for
the licensure test for samples of 5000, K-S for the variable kernel method is
larger than K-S for the observed frequencies. The smoothness assumptions have
less of a positive effect in estimating the cumulative distribution than in
estimating the raw score probabilities.

All estimation methods studied here using smoothness assumptions
performed far better than using observed frequencies, especially for smaller
sample sizes., For example, using the 4-parameter beta binomial method in
samples of size 500 yields a lower MSE than using observed frequencies with
samples of size 5000 for the ACT Mathematics and Social Science tests, and
almost as low a value of MSE using observed frequencies with samples of size
5000 for the licensure test. The differences between the methods based on
smoothness assumptions are small compared to the difference between the worst
performing method and using observed frequencies.

The results of the simulation study, although limited by the fact that
only three population distributions were examined, suggest a preference for
the 4-parameter beta binomial method. For the largest sample size the
polynomial method performs similarly to the 4-parameter beta binomial
method. It has been my experience that both the 4-parameter beta binomial
method and the polynomial give good fits to a wide variety of sample
distributions.

The polynomial method performed better than the kernel methods except in
cases in which the variation of the sample relative frequencies around the
true relative frequencies tended to be large, either because of a small sample
size and/or a flat distribution. For example, the polynomial method performed

worse than the kernel method for the ACT Mathematics data for sample sizes
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less than 5000. Figure 3 shows that the ACT Mathematics distribution is
relatively flat compared to the other two population distributions.

The poor performance of the polynomial method for the ACT Mathematics
test with smaller sample sizes, relative to the kernel methods, may partly be
due to the model selection strategy used. The logical flaws of this model
selection strategy for choosing an estimate have been mentioned previously,

In practice, a decision of which density estimate to use must be based on
the sample data. An estimate of ASE obtained by the bootstrap, jackknife, or
cross validation would be useful (although this would require extensive
computations for the polynomial method, and to a lesser extent, the 4-
parameter beta binomial method), but should probably not be used as the only
information on which to choose an estimate. For example, in Figure 2 the
approximate cross validation procedure picks h = 2 for fixed kernel method.

It is likely that a value of h greater than 2 would be more appropriate here.

For the polynomial and kernel methods it is probably unwise to use an
automatic procedure such as those used in the simulation study to choose an
estimate. The most practical information to use in deciding on an estimate
would be plots of the fitted and raw distributions, chi~square goodness of fit
statistics and fitted versus raw sample moments (for the kernel methods). It
is suggested that for the polynomial and kernel methods the actual estimate to
be used be chosen by looking at the fits for various degrees and window widths
and making a judgment based on this information, rather than using automatic
procedures as in the study. The results reported in Tables 2 through 4 may
either over or underestimate the performance of such subjective procedures for
the kernel and polynomial methods depending on the biases of the person

choosing the estimate for over or under smoothing and the true distribution.
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TABLE 1

Window Width (h) and Associated Values of Err Chosen
Using the Bootstrap and Approximate Cross Validation
Estimates of Err for 10 Simulated Samples

h for
Minimum Approximate
Err Bootstrap Cross Validation
Sample h Err h Err h Err
1 20 -.026083 20 -.026083 24 -.026082
2 12 -.026076 28 ~-.026049 36 -.026031
3 36 -.025999 20 ~-.025976 16 -.025959
4 24 -.025994 8 -.025919 12 -.025960
5 20 -.026057 8 -.026007 12 -.026043
6 24 -.025912 20 -.025912 16 ~.025906
7 36 -.026032 24 -.026024 24 -.026024
8 28 -.025999 24 -.025997 20 ~.025993
9 24 -.025963 24 -.025963 12 -.025942
10 24 -.025995 12 -.025977 12 -.025977
Mean -.026011 ~-.025991 -.025992

s.d. .0000526 .0000536 .0000531
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TABLE 2

Fit of Licensure Test Estimated Densities

Unsmoothed 4~Parameter
Sample Measure of Sample Variable Fixed Beta
Size Fit Frequencies Kernel Kernel Polynomial Binomial
Bias Squared .045 2.030 1.583 .783 .769
Variance 31.699 4,747 4.969 3.852 2,408
500 MSE 31.744 6.778 6.552 4,636 3.178%
K-S 32,595 28.505 27.835 24,236 21.842*
(s.e. K-3) (.505) (.475)  (.467) (.517) (.475)
Bias Squared .021 1.527 1.011 .581 .713
Variance 15.879 2.722 2.894 1,770 1.193
1000 MSE 15.900 4,250 3.905 2.351 1.906%*
K-S 23.519 22,218  20.557 17.331 16.442%
(s.e. K-8) (.367) (.363) (.348) (.365) (.356)
Bias Squared .016 1.034 .633 .505 .593
Variance 8.077 1.553 1.642 1.000 .600
2000 MSE 8.093 2,587 2,275 1.505 1.193*
K-S 16.296 16.317 14.540 12.875 11.617*
(s.e. K-S) (.261) (.267) (.254) (.242) (.248)
Bias Squared .007 .691 441 411 .634
Variance 3.089 .708 .775 .435 .229
5000 MSE 3.096 1.399 1.216 .846% .863
K-S 10.234 11.588  10.010 8.614% 8.773
(s.e. K-S) (.169) (.169) (.161) (.162) (.165)
Notes: Values of bias squared, variance, and MSE have been multiplied by

1000000, so they are in terms of frequencies for a sample size of

1000.

Within each sample size the lowest values of MSE and K-S are
identified by an '*',
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TABLE 3

Fit of ACT Mathematics Estimated Densities

Unsmoothed 4-Parameter
Sample  Measure of Sample Variable Fixed Beta
Size Fit Frequencies Kernel Kernel Polynomial Binomial
Bias Squared .114 .632 .925 1.423 704
Variance 46,472 5.899 4.911 6.952 3.604
500 MSE 46.586 6.531 5.836 8.375 4.308%
K-S 33.964 24.923 24,078 28.267 23.718%*
(s.e. K-8) (.503) (.486) (.481) (.507) (.490)
Bias Squared .048 .571 .798 .890 .624
Variance 23,715 3.141 2.841 4,085 1.745
1000 MSE 23.763 3.712 3.639 4.975 2.369*
K-S 24,582 18.409 18.119 21.196 17,463
(s.e. K-8) (.361) (.345) (.351) (.359) (.352)
Bias Squared .0157 .538 .656 .200 .524
Variance 11.735 1.698 1.690 2.223 844
2000 MSE 11,752 2,236 2,346 2,423 1.368*
K-S 16.824 13.174  13.323 14.008 12.476%*
(s.e. K-S) (.253) (.243)  (.236) (.262) (.246)
Bias Squared .007 416 .355 .093 .438
Variance 4,689 <762 .916 .666 .319
5000 MSE 4.696 1,178 1.271 .759 JI57%
K-S 10.552 8.989 8.978 8.153%* 8.468
(s.e. K-8) (.151) (.147) (.133) (.144) (.138)
Notes: Values of bias squared, variance, and MSE have been multiplied by

1000000, so they are in terms of frequencies for a sample size

of 1000.

Within each sample size the lowest values of MSE and K-S are

identified by an

ty? .
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TABLE 4

Fit of ACT Social Studies Estimated Densitieé

Unsmoothed 4-Parameter
Sample  Measure of Sample Variable Fixed Beta
Size Fit Frequencies Kernel Kernel Polynomial Binomial
Bias Squared .112 .338 .830 .279 .307
Variance 36.045 4,609 3.712 4,542 2.189
500 MSE 36.157 4.947 4,542 4,821 2.496%
K-S 34.001 25.296 25.828 26.237 22,167
(s.e. K-8) (.498) (.466)  (.455) (.550) (.469)
Bias Squared .035 .292 .562 .210 .327
Variance 18.029 2.387 2.198 1.727 1.048
1000 MSE 18.064 2.679 2,759 1.937 1.375%
K-S 23.831 18.131 19,316 17.121 15,914%*
(s.e. K-8) (.350) (.327) (.310) (.344) (.326)
Bias Squared .020 .233 .333 .167 .338
Variance 9,075 1.301 1.276 .908 .510
2000 MSE 9.095 1.534 1.609 1.075 .848%
K-S 17.017 13.704 14,402 12.551 11,791%*
(s.e. K-S) (.257) (.243) (.237) (.245) (.242)
Bias Squared .009 .188 .207 .107 .371
Variance 3.610 .556 .581 471 .188
5000 MSE 3.619 744 .788 .578 .559%
K-S 10.374 9.110 9,404 8.329* 8.427
(s.e. K-S) (.160) (.150)  (.142) (.157) (.148)
Notes: Values of bias squared, variance, and MSE have been multiplied by

1000000, so they are in terms of frequencies for a sample size

of 1000.

Within each sample size the lowest values of MSE and K-S are
identified by an '*'.
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4-parameter Beta Binomial
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4-parameter Beta Binomial

Polynomial degree=6

80 — 80 —
—X~ Raw ( —
-8 Smooth j_ gr?x\goth
60 — 60 —
K
5] -5
% 40 — ‘% 40 -
i 3
20 — A 20
0 0
| | I | | I | I I | I |
0 10 20 30 40 50 0 10 20 30 40 50
Raw Score Raw Score
Fixed Kernel h=2 Variable Kernel
80 — 80 —
< Raw [ —x— Raw
-~ Smooth -e— Smooth
60 — 60 —
: K K
> 4 >
2 g
[ ] A <
2 40 — 2. 40+
= &
s s
b
20 t 20 — X
0 0
| | | | ] I I ] | | | I
0 10 20 30 40 50 0 10 20 30 40 50
Raw Score Raw Score

Figure 2. Estimates for P-ACT+ Writing--College-Bound llth
Grade (sample size 1727)




217

|
ACT Mathematics ACT Social Studies
8000 —
8000 —
16000 —
- > 6000 —
[S I [8]
g g
= =
4000 — g
= ;. 4000 -
2000 — 2000 =
0 — 0 —
I 1 | | | | ] | ] | |
0 10 20 30 40 0 10 20 30 40 50
Raw Score Raw Score
Certification Test
2500 —
2000 —
-~
%’ 1500 —
=
T
[}
i
1000 —
500 —
0 %
| | | 1 I ]
0 10 20 30 40 50
Raw Score

Figure 3. Population Distributions Used in Study




28

Variance

60 —
50 —
—O— polynomial
-8~ beta 4
40 - -1 fixed kernel
Q —B- variable kemnel
S —X- sample
8
8 —
S 30

20 —

10 —

Raw Score

Mean Squared Error

60 —

50 ~—
8 ~O— polynomial
5§ 40 — —e-beta 4
o) ~ fixed kernel
5 - variable kernel
2 —X— sample
&30 D
8
(5]
=

20 —

10 —

Raw Score

Figure 4. Variance and MSE by Score Point for Licensure Test (N

1000)



29

Variance

Raw Score

40 —
30 —
8 .
g ~O~- polynomial
B 20 — -e- beta 4
- -1~ fixed kernel
—=- variable kernel
—X— sample
10 —
0 - =
I I | | I
0 10 20 30 40
Raw Score
Mean Squared Error
40 —
30 ~
g
3 -0~ polynomial
§ 20 — —o— beta 4
3 -+ fixed kernel
5 - variable kernel
2 ~X~ sample
=
| {
30 40

Figure 5. Variance and MSE by Score Point for ACT
Mathematics Test (N = 1000)






