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Abstract
Two ANOVA models for item scores are compared. The first is an items by
subject random effects ANOVA. The second is a mixed effects ANOVA with items
fixed and subjects random. Comparisons regarding reliability,
Cronbach's a coefficient, psychometric inference, and inter-item covariance
structure are made between the models. When considering the inter-item
covariance structures for the two ANOVA models, brief comparisons with factor
analysis models are also made. It is concluded that inference from a sample
of items to a population of items requires homogeneous inter-item covariances,
that reliability has different meanings under the two models, and that while
coefficient o is a lower bound for reliability under the second model, it is

not under the first.
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Introduction

This paper compares two different ANOVA models for items. The first
model is the two-way items by examinees random effects (Model II) ANOVA. The
second model is the two-way items by examinees mixed effects (Model III)
ANOVA. Very careful and complete statistical derivations of these models are
given by Scheffe” (1956a, 1956b, and 1959). This paper draws heavily
from Scheffe’'s work. The two ANOVA models are compared to each other in
detail and briefly to factor analysis models. Factor analysis models are
extensively discussed by Harmon (1976) and Mulaik (1972). As considered here,
the factor analysis model is statistically more similar to the mixed ANOVA
model than to the random ANOVA model. Under the factor analysis model, items
are considered fixed and non-random, while subjects are randomly sampled from
a population of subjects. See Mulaik and McDonald (1978), Williams (1978),
and McDonald and Mulaik (1979) for an alternative formulation of the factor
analysis model,

A1l of the models under consideration are linear models. A model is
defined as linear if an examinee's expected score on an item is a linear
function of item characteristics. Item characteristics may be fixed
parameters as in the mixed ANOVA model or random variables as in the random
ANOVA model. The factor analysis model is here considered to be linear in its
item parameters which are usually called factor loadings even though these
linear coefficients are applied to factor scores, which are unobserved random
vériables associated with examinees, An example of a nonlinear model is the
logistic ogive item characteristic curve model (Lord and Novick, 1968). From
a theoretical viewpoint, linear models usually do not accurately describe
dichotomously scored items, and most items are so scored. However, for

carefully constructed tests, linear models for item scores are often
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sufficiently accurate to provide useful approximations. [See Feldt (1965),
Hsu and Feldt (1969), Hakstian and Whalen (1976), Seeger and Gabrielsson
(1968), Gabrielsson and Seeger (1976), McDonald and Ahlawat (1974), McDonald
(1981, 1985), and Collins, Cliff, McCormick, and Zatkin (1986).]

The discussion of the models presented here will focus on three
characteristics useful in psychometrics. The first is reliability. Under the
three models reliability is defined as the squared correlation between an
observed and a true score. A few relevant references regarding reliability
are Gutman (1945), Novick and Lewis (1967) Bentler (1972), Jackson and
Agunwamba (1977), and Bentler and Woodward (1980, 1983). Parametric
expressions for reliability and Cronbach's (1951) coefficient alpha are given,
and the sampling distribution for the sample alpha coefficient is discussed.
The second characteristic is the inter-item covariance matrix. For each
model, the assumed or resulting covariance structure is discussed and compared
with factor analysis models. Finally, psychometric inference is discussed.
Psychometric inference is considered as statistical inference to a population
of items from a sample of items randomly drawn from the population. The more
general term generalizability is not used since it connotes statistical
inference for a wide array of facets, not just items. There is a large body
of literature on psychometric inference. A few references are Hotelling
(1933), Tryon (1957), Lord and Novick (1968), Cronbach, Gleser, Nanda, and
Rajaratnam (1972), Mulaik (1972), Kaiser and Michael (1975), Rozeboom (1978),
McDonald (1978), and Brennan (1983). Both the approach and results presented
here, while most similar to, differ in part from those developed by Lord and
Novick (1968) and Cronbach et al. (1972).

Brief descriptions of seven conclusions original to this paper are:

1. Conditional variances for interaction effects may be heterogeneous in
the random ANOVA model.



Linear Models
6

2. The random ANOVA model requires the inter-item covariance matrix to
have homogeneous off-diagonal elements, while the mixed ANOVA model
places no restrictions on the inter-item covariance matrix except
positive semi-definiteness. Hence, any factor analysis model may be
subsumed under the mixed ANOVA model but not the random ANOVA model.

3. Interaction effects in the random ANOVA model are analogous to
specific factors in a certain single common factor factor analysis
model, while the examinee main effect is analogous to the single
common factor.

4, The squared correlation between observed scores and true scores is a
useful definition of reliability under the random ANOVA model as well
as under the mixed ANOVA model, but the definition of true score
differs under the two models.

5. Reliability as defined in U4, has different meanings under the two
models. In the mixed ANOVA model, interaction (specific) variance is
included in true score variance, while in the random ANOVA model it
is not.

6. The parametric value of Cronbach's alpha coefficient is a lower bound
to the parametric value of reliability (as defined in Y4) under the
mixed ANOVA model but not under the random ANOVA model.

7. Given certain normality assumptions, a transformation of the sample
alpha coefficient has an F distribution under the random ANOVA model.
For the mixed ANOVA model, the F distribution only holds if in
addition to certain normality assumptions there are either no
interactions or the inter-item covariance matrix has special
restricted forms.

The practical implications of these conclusions for the analysis of test data
will be discussed in the last section of this paper.

The Items by Examinees Random ANOVA Model

The model presented here is essentially the same model developed by
Scheffe’ (1959, chap. 7). It assumes that a random sample of n items chosen‘
from a countably infinite population of items is administered to a random
saﬁple of N examinees chosen from a countably infinite population of
examinees. The sampling of items and examinees is assumed to be completely
independent. Let xij represent subject j's observed score on item i. A

preliminary form of the model is
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Xx..=t,, + e,.
1] 13 1]

i=1,...,n Jj=1,...,N. (1)
The quantities tij and eij are, respectively, the true score and the error
score of examinee j on item i. Different definitions for true and error
scores under the random ANOVA model will be admitted later. Within the
present context, true and error scores are not absolutes; their definitions
may vary depending on the inferences being made. The various true and error
scores considered in this paper are not necessarily an exhaustive set of
possible true and error scores under the models presented.

If examinee j responds independently and repeatedly to item i, these
replications are indexed by the subscript k. For cognitive tests such random
replications are rarely available, though they occasionally may be obtained
for affective scales. The present development assumes that such replications
are not available from the data. In the theoretical development of the model,
these replications are allowed to be present. In particular, the model
assumes that for the sequences of independent random variables
eij1’ eij2’ cee s eijk’ s 8 E(eijk) = 0 for all i, j, and k, and that
Var(eijk) = E(e;jk) = oz(eij) , 1.e., that the error variances are
heterogeneous over the domains of i and j. For notational simplicity, the
subscript k will usually be suppressed, since for the remainder of the paper
it will usually take the value of one.

The above imply that Ei(eij) = 0 and that Ej(eij) = 0, where notation
such as E; and Var; means that the expectation and variance are taken over the
population whose members are indexed by the subscript i. When no subscript is
present the expectation is over random replications. The above also imply
that the true and error scores are uncorrelated, i.e., Covi(t..,e

i§j’oig’
) =0 for all j,j” and i,i” , respectively. It is further

)

= Covj(tij’ei’j

assumed that all errors are independent within and across all populations.
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Scheffe” (1959, chap. 10) shows that the expressions for expected mean
squares, to be presented later, are valid under the heterogeneity of error
variances indicated above. He also shows that the F distribution theory
invoked later is exactly valid only when the error variances are homogeneous,
but holds approximately when the error variances are mildly heterogeneous if
the design is balanced. This paper assumes that the error variances are only
mildly heterogeneous and that each examinee responds to each item once and
only once. Hence, the design is balanced and the F distribution theory will
be assumed to hold when the appropriate normality assumptions, discussed
later, are invoked.

The following quantities will be used in later developments:

Ej(eij) = EJE(eij) = Ej(oz(eij)) = oz(ei) ,
Ei(eij) = EiE(eij ) = Ei(°2<eij)) = oz(ej) , and

EiEjE(eij) = Ei(cz(ej)) = Ej(oz(ei)) = g2(e)

The model is further specified by writing

]
=
+
o
+
o
+

tij i 3 cij (2)

where U

i

EiEj(tij) s a; = Ej(tij) - u o, bj = Ei(tij) - u, and

cij = tij Ei(tij) - Ej(tij) + u . The overall mean is denoted by p , while

a; and bj denote the main effects due to item i and examinee j,

respectively. The interaction effect due to item i and examinee j is denoted

by ¢ These definitions implicitly assume that all items are similarly

ij-
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scored and hence on the same scale. Scheffe” (1959) shows that the above

definitions imply that the model components: a,, bj, and cy have

J
unconditional and for the cij also conditional expectations of zero.

For what follows, it is important to note that the subscripts i and j do
double duty; they are both subscript indices and random variables.
Furthermore, the aj, b

, and c;; are functions of the random variables i and

J J
j. Scheffe’” introduces additional notation to avoid these double meanings
for the subscripts, but the present paper sacrifices Scheffe’'s conceptual
clarity for notational economy.

Scheffe’” (1959, pp 240-241) shows that certain marginal covariances among

the model components are zero. His derivations are presented here in detail

because of their importance. Scheffe’ shows that

*
o(ai,cij) EiEj(ai Ci')

J

Ei[ai*Ej(cij)li]

Ei(ai*ci-) =0 because c, =0 for all i,

1l

b.,C. . = E.[b.*¥E, (c, .)|]
o ( 3 13) J[ j 3 € ] |31
= E,(b,*¥c ,) =0 because ¢ , = 0 for all j
jyte.y) . J
= * .. . i d
o(ciJ,ci,J) EiEi’Ej(cij c, J) i =

« .
ELEE; . (cyy ci,j)IJ]

i

Ej[Ei(cij|j>*Ei,<ci,j|j>]
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= E.(c .¥c¢ .) = 0 Dbecause c |, 0 for all j,
J *J *J
and

)] J= 3

= i *
o(c, .,C, ) Ei[Ej(cijll) Ej’(cij'
= Ei(ci.*c..) =0 because ey, = 0 for all i.

In the above, the notation EiEi’ refers to the expectation over the bivariate
distribution obtained from sampling pairs of items from the population of
items where the members of each pair are distinct.

Scheffe’ (1959) does not discuss the following model component

conditional covariances:

. = * .

i}

o(b.,cijli)

E.(b.¥c, .|1
J J(J lJ|)’

"

o(e,.,c,..li,i’
( 1y JI ,17)

X .
1 E.(c. . Ci,jll,l Y, and

J 1]

ale J,i") = E (¢ e, .. APVAD I

15°%13° %15 %13
These conditional covariances are of considerable concern because as will be.
seen later their values determine the inter-item covafiance matrix.

Though a formal proof will not be given, it is asserted here that the
above conditional covariances are also zero under Scheffe’'s (1959) model.
Four considerations lead to this conclusion. First it does not appear
possible to generate model component data such that Scheffe’'s marginal

covariances are zero but the above conditional covariances are not.
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Second, Scheffe’'s proof that the above marginal covariances are zero depends
on the order in which the conditional covariances are taken. If the order is
switched the same result must be found. This implies that the above
conditional covariances must have expected values of zero, and this can occur
only if all are zero or some are positive and some negative such that their
average is zero. Because, as will be shown, these conditional covariances
determine the inter-item covariances, and tests are usually constructed of
items that all intercorrelate positively, it appears more reasonable in a
testing context to assume that the conditional covariances are zero rather
than some positive and some negative. Third, Scheffe” (1959, pp 242-243)
considers the two-way random model interaction components as analogous to the
error terms in a two-way fixed effects model and these later have all
conditional covariances as zero. Fourth, Cornfield and Tukey (1956) consider
several covariances in the derivation of expected mean squares for factorial
designs, but in the two-way random model these covariances are all zero.
Scheffe’ (1959) defines the variance components of the model as:
g2(a) = Ei(a;), g2(b) = Ej(bg), and o2(¢) = EiEj(c;j). In defining o%(e),
Scheffe’” does not consider the interaction conditional variances
oz(ci) = Ej(c;j) and oz(cj) = Ei(cij)' Though i and j are assumed to be

statistically independent variables, is a funetion of both these variables

Cij
and for this reason the conditional interaction variances need not be
homogeneous. If it is assumed that the model components have a multivariate
normal distribution as Scheffe’ sometimes does, then the model components are
mutually statistically independent and this forces the interaction conditional
variances to be homogeneous. Here they will be considered heterogenous unless

otherwise specified. Scheffe’'s (1959, chap. 10) demonstration that his

formulas for expected mean squares are valid under heterogeneity of error
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variances implies the same under heterogeneity of interaction conditional

variances.

Of particular interest in the random model ANOVA are the mean squares for
examinees and the mean squares for items by examinees which are denoted MSb
and MS,, respectively. Scheffe” (1959) derives the following expressions for
the expected value of these mean squares: EnN(MSb) = ng2(b) + o2(c) + o*(e)
and EnN(MSc) = ¢g2(e) + ¢g%(e), where E,y denotes that these expectations are
the means of an infinite number of bivariate random samples consisting of n

items and N subjects.

These mean squares are of interest because Hoyt (1941) has shown that the

~

sample value of Cronbach's (1951) coefficient a, denoted o herein, is given by

o = [(MSb - MSC)/MSb] = 1 - (Msc/MSb) . The parametric counterpart of

~

a depends upon the statistical model used to describe the data. For the

random ANCVA model this parameter is denoted a , the subscript RA denoting

RA
that this definition is specific to the random model ANOVA. The

parameter o is defined by

RA

o = %nN(MSb) - EnN(MSc) _ 02(b) (3)
RA EnN(MSb) a?2(b) + g2(¢)/n + g%(e)/n

~

The rationale for this definition is that a converges in probability to Opa

under the RA model. This is discussed further below. Since aRA is defined in

terms of EnN(MSb) and EnN(MSc) whose definitions in turn depend upon the RA

model, the definition of o is tied to the RA model and hence the RA

RA
subscript. Feldt (1965) has shown that under the additional assumptions of
independent normal distributions for the {a;}, {bj}, {cij}’ and {eij},

(1 - aRA)/(1 - o) is distributed as F[N-1, (n-1){(N-1)]. Under these

assumptions, the conditional variances for both the interactions and errors
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are considered homogeneous, hut slight heterogeneity should produce at most
only miid departures from the F distribution. Using the expression for the

mean of an F distribution it follows that EnN(a) = (N - 1)/N - 3)]aRA -
[2/(N - 3)]. This shows that o is an asymptotically (as N » «) unbiased

~

estimator of Opp Even without the normality assumptions, a is still 2

consistent estimator for aRA since it is a method of moments estimator

for apa (Serfling, 1983), and equivalently converges in probability to Appy
The random ANOVA (RA) model has been presented in some detail. It i3 now
of interest to compare that model to the factor analysis (FA) model. This
comparison may be made by examining the conditional czovariance matrix for the
n sampled items, the conditioning being on the n items selected from the
infinite population of items., Let the observed scores on the n items be

represented by the column vector x . The conditional covariance matrix is

E.L(

X = x, - BE.(x.)) (x. - E,(x, . The diagonal elements of this matrix
I = EyLCEy — Bylxp) ey = Bylx) g s
J

J
are Varj(xi ) = g2(b) + oz(ci) + oz(ei) . Because it is assumed here that

under the RA model OOVj(Cij’Oi'-) = 0 for any palr of items randomly

J
selected from the population of items, it follows that this covariance will
be zero for all pairs of items in the randomly selected sample of n items,
and consequently that the off-diagonal elements of this matrix are

Cov,(x, ) = g2(b) . The rather simple form of this conditional

X

J 1J 13
covariance matrix may be represented as I, = 0*(p)J + Ale*(c,) + o*(e;)]
where J represents a matrix of all ones and A is a diagonal matrix with the

indicated elements. It follows that the conditional covariance matrix for the

true scores on the n items is

§t|n = 0%(b)d + Ale®(c))) . (%)
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Hocking (1985) presents covariance structures for a wide variety of random and
mixed ANOVA models. He assumes homogeneity among the error and conditional
interaction variances. Given his assumptions, his results agree with those
presented here,

The RA conditional covariance structure is identical to the covariance
structure of a one common factor FA model with homogeneous factor loadings and
n specific factors distinct from the errors. This is Spearman's (1904) model
but with the additional restriction that the items all correlate equally with
the general factor. More specifically, the subject main effect variance in
the RA model is analogous to the common factor variance in the FA model while
the conditional interaction variances in the RA model are analogous to
specific variances in the FA model. Another way to characterize this
conditional covariance structure is as an essentially tau equivalent model
(Lord and Novick, 1968) but with the addition of n specific factors with
possibly heterogeneous variances.

If the specific factors have homogeneous variances, then the conditional
covariance structure for the true scores is equivalent to the equicorrelation
model (Morrison, 1976). Under the equicorrelation model, the first and
largest eigenvalue of T

“t|n’

second distinct eigenvalue of I

denoted X,, is equal to no2(b) + ¢?(c) . The
tIn has multiplicity n-1 and is given
by g2(e) . It is denoted i,

The simple form of the conditional covariance matrix in the RA model
results from the uncorrelatedness of the model components. Though this
covariance structure is a rather restricted special case of the many more
versatile covariance structures permitted by FA models, the RA model permits

explicit statistical inference to a population of items, The price for this

gain in "generalizability" is the assumption of a simple covariance structure
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among the items,

The inferential differences between considering items random and
considering items fixed may be illustrated by how reliability may be defined
under these conditions. For subject j, let the item domain true score be
defined as Tj = Ei(xij) =y + bj . This implies that the item domain error
score for subject j is € = X .-1,=a +c¢,+e . . Notethat for random

J J J J

replications E(sj) =a, + ch , and that for examinees Ej(ej) a. .

Furthermore, considering just a one-item test, Covi(eij,eij,

)

02(a) for all j = j° . These conditions violate the usual assumptions of
classical test theory (Lord and Novick, 1968, chap. 3), because here the
errors do not have means of zero and the errors are inter-correlated.

However, Covj(rj,ej) = 0 and this crucial result implies that if interest
focuses on the reliability of a specific test composed of n randomly selected
items with respect to the item domain true scores, then a useful definition of
reliability is Rel(§.j,rj) = [Corj(}'.j,Tj)]2 . Reliability so defined
measures the accuracy with which relationships between observed test scores

are indicative of relationships between item domain true scores.

3 . - 2
Since Cov.(x'j,rj) g%(b) ,
Var (%, ) = 0*(0) + (1/n2)2?02(¢i) + (1/09)]l0%(e)) ,

and Varj(rj) = g2(b) , it follows that

]

Rel (X, ;»7,) o”(b)

J
52(®) + (1/n)]%2 () + (1/n)]fo%(e,) (5)

Varj(Tj)/Varj(;.j),
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which is the usual ratio of true score variance to observed score variance. If
the error variances and the conditional interaction variances are homogeneous
then Upp = Re1(§.j,rj) , otherwise Upa is only an approximation to this
reliability, albeit not a bad one.

An alternative definition of reliability under the RA model which is more
appropriate when concern is not with the reliability of a particular randomly
constructed test but rather with the population of such tests is
En[Rel(;-j'Tj)] . Here, E  denotes that the expectation is over the
population of randomly constructed tests consisting of n items. This
definition of reliability is appropriate when the same test will be
administered to every examinee, but concern is with the reliability of any
randomly constructed test rather than a particular test that is randomly
selected. The situation in which different examinees take different randomly
constructed test forms is not often encountered in practice and is not
addressed in this paper (but see Lord and Noviek, 1968, p. 208). If the error
variances and the conditional interaction variances are homogeneous, then
En[Rel(;-j’Tj)] = q

. This follows since Rel(;.j,T.) 4 for each and

=aR

every randomly constructed test consisting of n items. If homogeneity does

RA

not hold, an exact expression for En(Rel(;.j,rj)) requires additional model
specifications which will not be attempted in this paper. However, it may be
shown by using the delta method of Kendall and Stuart (1977, Vol. I) that aRA
is a first order approximation for En[Rel(E.j,rj)] under heterogeneity.

If the data are accurately described by the RA model, but the usual

definition of reliability (Lord and Novick, 1968, chap. 3) is adopted, then
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Rel(x .,t .) = [Cor.(x .,t .)]% = Var (¢t ,)/Var (x .
.y _J) { J( Y ,J)] J( _J) arJ(x.J) (6)
02(b) + (1/n*)]j0% (¢ )
2 2\T0 2 z T 2
g2(b) + (1/n )Zio (¢) + (1/n )Zio (ei)

Usually, Rel(;’j,g.j) > Apy - However, if thers is no item by examinee
interaction and the error variances are homogeneous then Rel (x j,E.j) = Opp -

A comparison of (6) to (5) shows that the interaction (specific)
variances are included in the numerator of Rel(I.j,f_j) but excluded from the
numerator of Rel(;.J,tj) . This difference is due to the difference in
definitions between E-j and Tj . If the true score is specific to the test,
i.e., E-j , then the interaction (specific) variances are included in the true
score variance. When the true score is defined over the population of items,
i.e., Tj , then the interaction (specific) variances do not contribute to the
true score variance.

Two brief observations regarding the RA model are of interest. If no
interactions are present the RA model may be viewed as a linear analog of the
one parameter Rasch model (Lord and Novick, 1968, p 402) with explicit item
and examinee sampling. Second, the symmetry of the RA model allows
consideration of not only the inter-item covariance matrix but also the
similarly constrained inter-examinee covariance matrix.

This section of the paper has presented a detailed development of the RA
model and a brief comparison of the RA model to the FA model. The development
demonstrates that under the RA model generalization in a statistical manner
over a population of items requires a simple and specialized covariance
structure among the items. In the next section, the mixed ANOVA (MA) model is

considered.
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The Items by Examinees Mixed ANOVA Model

Hocking (1973) compares three different versions of the two-way mixed
ANOVA (MA) model that have been presented in the statistical literature, and
resolves the differences between their associated expressions for expected
mean squares., This paper adopts the most general one of these three which is
due to Scheffe” (1959). In the mixed ANOVA model, the N examinees are
randomly sampled from an infinite population of examinees, but the n items are
considered fixed and nen-random. Even though the items may be randomly chosen
from a population of items, this fact is ignored; the MA model simply is not
concerned with statistical inferences to a population of items. All
statistical inferences are conditional on the n items selected, since the
population of items is not defined in the MA model,

The model may be written as

X,, = b, . e, .
ij ij iJ

uot ui + bj + cij . The model assumes that the error scores have

zero means for all i and j and this implies that the true and error scores are

where ¢, .
1]

uncorrelated. The non-random parameters u and ai represent the overall mean

and the main effect of item i, respectively. The random variable b\j

represents the main effect due to examinee j, while the random variable cij

represents the effect due to the interaction of examinee j with item i. These

it

model components are defined as y = Ej[(1/n)2?tij] Ej(€ L),

]
= - L=t - de,, =t .-t . -E(t )+
R R R L I T R K T B A KD

The above definitions imply that the model components will satisfy the

following conditions: Z?qi = E?Oij = Ej<bj) = Ej(c..) =0

It is also implicitly assumed that the items are similarly scored and hence on
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the same scale. Allowing for heterogeneous error variances ylelds the
following: oz(ei) = Ej(e;j) and ¢2(e) = (1/n)2?oz(ei) .
If the error variances are homogeneous, then oz(ei) = g%(e) for all i.
Let Ej represent the n dimensional column vector of examinee j's true
scores on the n items. The true score covariance matrix is
L= {oii,} = Ej[(§j - Ej(gj))'(gj - Ej(gj))] . The only restriction placed
on £ is that it be positive semi-definite. The covariance among the items may
be of a very general form, including any multiple common factor model. This
is quite different from the RA model where a simple specific conditional
covariance structure is assumed. Removing the randomness of the items permits
a much more general covariance structure among the items, but eliminates any
statistical inferences concerning the population of items,
From the definitions of the random model components, the variances and

covariances for these components may be expressed as functions of the

{oii,} . Scheffe’ (1959) shows that

Var . (b,) = E.(b?) = 0o
a J( J) J( J) g (7
= * = —— —'— S
Covj(cij’ci’j) Ej(cij ci’j) Osy- o4 oy +¢g , and (8)
Cov.(b.,c..) = E.(b.*c,.) =0, -0 . (9)
J( J clJ) J( J lJ) 1. o

Scheffe’ (1959) defines the variance components as

g2 (b)

Var,(b,) and (10)
J ]

g%(c)

n n -
[1/(n-1)]ZiVarj(ci ) = [1/(n=11] oy =0, ) (11)

J
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Using these definitions, he shows that MSb and MSC, as previously defined
under the RA model, have the following expected values under the MA model:
EN(MSb) = no?(b) + o%(e) and EN(MSC) = ¢*(c) + o®(e) , where Ey denotes the
expectation over an infinite number of random samples of N examinees.

It is interesting to note that the random components are correlated in
the MA model and that these correlations are determined by L . In the RA
model the random components are uncorrelated, but the covariances among the
items are required to be homogeneous. What happens to the component
correlations in the MA model when the inter-item covariances are assumed to be
homogeneous will be investigated shortly.

First, however, reliability and its relationship to coefficient alpha
will be discussed. The sample alpha coefficient under the MA model is
identical to the sample alpha for the RA model, and is given
as ; = (MSb - MSC)/MSb. Its parametric counterpart under the MA model will be

denoted by Ayva and is defined as

~ [EN(MSD) - EN(MSC)] Oz(b) - 02(0)/1,1

= . = . (12)
MA Ey(MSy) 62(b) + o2(e)/n

o

~

The rationale for this definition is that o converges in probability

to Upp under the MA model. This is further discussed below. If (1) the

random model components including the errors are normally distributed, (2) tﬁe
error variances are homogeneous (though mild heterogeneity should be
aéceptable), and (3) ¢2(c) = 0, then using results given by 3cheffe” (1959) it
may be shown that [(1 - aMA)/(1 - ;)] is distributed as

F[N-1, (n-1)(N-1)], which is the same distribution as under the RA model.
Similarly, this F distribution implies that EN(&) = [(N-1)/(N—3)]aMA -

~

[2/(N=-3)] , and hence that a is an asymptotically unbiased and consistent
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estimate of O Kristof (1963) has previously derived these results. If
02(c) = 0, then the F distribution still holds if L has the highly symmetric
structure discussed by Scheffe’ (1959, p 264) or if Ex has the type H form

described by Huynh and Feldt (1970); but as will be seen later aMA is then a

strict lower bound to reliability. However, even if the foregoing assumptions

are not fulfilled, a is still a consistent estimator of GMA since it is a
method of moments estimate for Cpra (Serfling, 1983), and equivalently
converges in probability to‘ocMA . Finally, it should be noted that
if o%(e) = 0, then all the iz = 0 and the MA model is identical to the
essentially tau equivalent model discussed by Lord and Novick (1968).

Under the MA model, the mean true score of examinee j is
E-j = (1/n)Z?E(Xijk) where, as discussed under the RA model, E denotes
expectation over the errors associated with random replications.
Let X denote the n dimensional column vector of the j-th examinee's observed
scores on the n items. Let §x denote the covariance matrix for the observed
scores. It follows that I, =1L+ é(cz(ei)) where é(oz(ei)) is a diagonal
matrix with the error variances as its elements. Following Lord and Novick

(1968, chap. 3), reliability under the MA model is defined as

]

Rel(x_,,t ) = [Cor (EE.J.,E_J.)]Z' = 02(b)/[o2(b) + 0%(e)/n] (13)

J'ed J

St )/var, (x L) .
VarJ(t.J) arJ(x.J)

The above follows from the expressions for the variance components given in
(10) and (11). Comparison of the last expression in the first line of (13)
with the expression for Ay given in (12) demonstrates

that ay, = Rel(§.j,f.j) if and only if ¢2(¢) =0 , 1i.e., the items are

A



Linear Models
22

essentially tau equivalent, Othérwise, Aya < Rel(?_.,z.j). This agrees with
the results of Guttman (1945), Novick and Lewis (1967), Bentler (1972), and
Jackson and Agunwamba {(1977).

Under the assumption of equivalent covariance structures for the RA and
MA models, comparisons between the two models regarding variance components,

reliability, and coefficient alpha will now be undertaken. The RA true score

conditional covariance structure given in (U4) may be reexpressed as
- 2
;t|n qd + A(ui) QR

where o2(b) = q and oz(ci) = uz . The following true score covariance
structure will be assumed for the MA model:
I=aqd+ Al . (15)
For the above covariance structure, Table 1 displays the variance

Insert Table 1 about here

components for the RA and MA models. This paper has followed the convention
of labeling the variance components the same in both models, but Table 1 shows
that the variance components have different meanings under the two models.
While o¢2(c) depends only on the specific variances, though in different ways
in the two models, 02?(b) includes common and specific variances under the MA
model but only common variance under the RA model, For more complicated
covariance structures than (15) under the MA model, such simple relationships
between the variance components and the covariance matrix are not apparent.

The differences in variance components between the two models have

ramifications for reliability and coefficient alpha under the two models.



Linear Models
23

Table 2 displays alpha and reliabilities for the two models under the

indicated covariance structure. Coefficient alpha differs statistically under
the two models in that expectations are used in the denominator of dpa while
summations are used in the denominator of o Nonetheless, coefficient alpha

MA.
has a similar psychometric meaning under the two models since under both
models the numerator and denominator depend, with slight variations, on the
same elements of the covariance matrix. Rel(;.j,f.j) is identical under the
two models, but differs from Rel(;.j,rj) under the RA mddel as has already
been noted.
Under the RA model, the random model components are uncorrelated as was

previously discussed. For the MA model under the covariance structure in

(15),

Cov (by,e; ) = [a + (u/m] - [q+ (1/n2)2’i‘u;]

2 . n .
[u? (1/n)21ui]/n and

- 2 - 2 2y 2
Covj(cij,c.,.) q (q + ui/n) (q + ui,/n) + [q + (1/n )Ziui]

1]

[(1/n)2?u; - u; - u;,]/n

2 . s ,Cs ) = = -2
If all the u? are equal, then CovJ(bJ,clJ) 0 and Covj(cij’c ) u2/n

i’
where u? is the common value for all the u;. The covariance -u?/n is due to

the fact that under the MA model Z?cij = 0 for all j. As was noted
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previously for the RA model, the uncorrelatedness of the random model
components results in the simple covariance structure given in (4) and (14).
What has just been shown is that when a slightly simpler covariance structure
is assumed for the MA model, the random model components essentially become
uncorrelated. Hence, the correlations among the random components and the
inter-item covariances are related in a similar fashion under both models. To
obtain psychometric inference under a more complicated inter-item covariance
structure than (14) requires an RA type model which permits the model
components to be correlated. Such correlations would make expressions for the
mean squares much more difficult to obtain.
Finally, when the u; are homogeneous and hence the equicorrelation
covariance structure presented by Morrison (1976) (that is equivalent to
Scheffe’'s (1959) highly symmetric covariance structure) holds, then
no?(b) = A, where A, is the first and largest eigenvalue of I in the MA
model. The one remaining distinct eigenvalue of I, X,, has multiplicity n-1
and is equal to g2?(c).

Summary and Discussion of Implications for Practice

It has been shown that coefficient alpha is approximately equal to but
not necessarily a lower bound to reliability under the RA model, and that it
is a lower bound to reliability under the MA and FA models (the result for the
FA model having been shown previously by others). These conclusions concernA
the parameter values for these quantities and not necessarily their sample
eétimates. Under the RA model where statistical inference to a population of
items from a sample of items is permitted, it was found that the inter-item
covariances must be homogeneous, and that this homogeneity is due to the model
components being uncorrelated. This restriction is not required under the MA

model, but it does not permit psychometric inference. These conclusions are,
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of course, specific to the models under consideration, and other models may
yield different results.

It is usually the case in education and psychology that inference from a
sample of ‘items to a population of items is a desired goal in the analysis of
test data. However, this may not always be true. A situation in educational
measurement where psychometric inference may not be required is when a test is
divisible into well defined content heterogeneous subtests, and the subtest
scores are the measurements being analyzed. 1In this situation, an appropriate
model for the data could be a subtest by examinee two-way MA model. In
psychology, if an affective scale such as a personality inventory consists of
well defined psychologically distinet subscales, then a subscales by subjects
two-way MA model could also be an appropriate model for the data.

If psychometric inference is desired and if the RA model presented within
is going to be used to analyze the data, then it is appropriate to investigate
whether or not the data satisfy the covariance structure assumed under the RA
model. This covariance structure is a linear covariance structure, and Browne
(1972) has derived a procedure based on the principle of generalized least
squares (GLS) estimation that may be used to statistically test the fit of the
data to the RA model covariance structure. Browne's (1972) method is non-
iterative and hence relatively simplevcomputationally. J;reskog (1978)
discusses statistical tests for covariance structures based on GLS and maximum
likelihood (ML) estimation methods. The computer program LISREL VI
(Jéreskog and S;rbom, 1986) implements those methods as well as others, and
is accessible through the SPSSX (SPSS* Inc, 1986) computer program. Bentler
(1983) and Browne (1984) have developed GLS test procedures with weaker
distributional assumptions but more computational complexity. Bentler (1985)

has also written a computer program, EQS, which implements his procedure and
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is available as part of the BMDP Statistical Software computer package. It is
designed for easy use. If the RA model fits the data, then ; is an
appropriate estimator for the reliability index, Rel(Q.j,Tj), which assesses
how well relationships between observed scores represent relationships between
item domain true scores.

If the items are dichotomously scored, then difficulties may arise in
applying the above procedures to the usual sample covariance matrix or the
sample matrix of phi coefficients. Mislevy (1986) discusses these problems
and reviews alternative methods for testing covariance structures designed to
deal with dichotomously scored items. However, the results of Collins et al.
(1986) suggests that it may be appropriate to first analyze the usual matrix
of sample moment covariances or correlations. If difficulties arise, then
recourse may be had from the more theoretically and computationally complex
methods discussed by Mislevy (1986).

If the RA model cannot be applied because the data substantially violate
the requirement of homogeneous inter-item covariances, or inference to a
population of items is not desired, then the MA model may be used. As was
shown, o is a lower bound to reliability under the MA model and consequently
under any FA model (the latter having been shown previously by many others).
However, under the MA model, better lower bounds than o exist. The best is
the greatest lower bound to reliability, derived independently by Jackson and
Agunwamba (1977) and Bentler and Woodward (1980). Bentler and Woodward (1983)
pfesent the most efficient numerical algorithm for computing a sample estimate
of the greatest lower bound to reliability. In general terms, the computation
requires the solution of a nonlinear optimization problem with inequality
constraints and is rather complex. For the investigator who desires a simpler

estimate, even if it is less optimal, Jackson and Agunwamba (1977) suggest
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that Guttman's A6 coefficient may be advantageous "in the typical situation
where the inter-item correlations are positive, modest in size, and rather
similar." The computer package SPSS* (SPSS* Inc., 1986) has a reliability
component which computes a sample estimate for A6 as well as several other
reliability estimates.

If the test has many items, then some investigators may find it difficult
or expensive to compute sample estimates for s or the greatest lower bound.
These investigators may view coefficient o as an appealing reliability index
for long tests because of its computational simplicity. Such investigators
may find solace in the results of Green, Lissitz, and Mulaik (1977) which
suggest that o increases as the number of items increases even when the test
has multiple common factors and a is only a strict lower bound to the
parameter value of reliability. Green et al. (1977) argue that this result
makes a a poor index of test unidimensionality. Fortunately, those qualities
which make a a poor index for unidimensionality increase its worth as a
rellability index, and this is especially true for long tests. Nonetheless,
the greatest lower bound to reliability has optimal properties which indicate
that it is worth computing whenever feasible.

Finally, because coefficient alpha may be a useful estimate of
reliability under both the RA and MA models, it is worthwhile to review the F
distribution theory for ; under both models. In addition to the appropriate
normality assumptions for each model, the F distribution theory requires
homogeneity of error variances under both ANOVA models and homogeneity of
interaction conditional variances under the RA model, but mild heterogeneity
of these variances should not greatly affect the distribution theory. Under
the RA model, o may equal or approximately equal reliability when the F

~

distribution for o holds, but o is not a lower bound for reliability. Under
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~

the MA model, the F distribution theory for a holds and o equals reliability
when there are no interactions. If interactions are present, then the F
distribution theory for & requires the special covariance structures of
Scheffe” (1959, p 264) or Huynh and Feldt (1970) and a is then a strict lower
bound to reliability. If a conservative estimate of a or the parameter value
of reliability under either model is desired, then Woodward and Bentler (1978)

show how the F distribution theory for o may be used to obtain a probabilistic

lower bound to a.
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Table 1

A Comparison Between Variance Components for~ Lhe RA and MA
Models Under the Tndicated Covariance Structurs “or Both Models

BA_Model. MA_Model
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